Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307665251> ?p ?o ?g. }
- W4307665251 abstract "Abstract Smart Water Assisted Foam (SWAF) flooding is a promising and an emerging synergic enhanced oil recovery (EOR) technique that combines smart water and foam injections. This technique works best in carbonates with mixed-to-oil wet wettability, where smart water (SW) alters the rock wettability towards a water-wetting state and stabilizes the foam lamellae, and surfactant aqueous solution (SAS) reduces interfacial tension (IFT) leading to improvement in oil recovery. This paper provides more insight and better understanding of the controlling mechanisms behind incremental oil recovery by this hybrid technique through a combined numerical and experimental approach. In this study, a mechanistic approach using surface complexation modeling (SCM) and DLVO theory was followed for modeling this hybrid technique, which aids in a better understanding of crude oil/brine/rock (COBR-system) interactions. The SCM considered the SAS-rock and SAS-oil interactions, which enabled improved prediction of rock wettability alteration through capturing surface complexes and surface potentials in the COBR-system. The Phreeqc simulator was used and the simulations were performed at 80°C. The proposed SCM was validated against experimentally measured contact angle and zeta potential measurements. Subsequently, to identify the best SAS formulations that promote stable foam generation and its propagation inside porous media during coreflood, foamability and foam stability tests were performed. Successful combination of SAS and Gas (i.e., SAG) candidates were confirmed by conducting coreflooding tests. Furthermore, the CMG-STARS simulator was used to history match a coreflooding experiment with providing insights into the relative permeability curves and the related interpolation parameters. Based on the numerical and experimental results, a stable water film was noted for low salinity case of MgCl2 solution where the same surface potential signs were obtained for both rock-brine and brine-oil interfaces. Also, the maximum contact angle reduction for the single ionic compounds was demonstrated by MgCl2 (i.e., 3500 ppm), which was 6.7°. Further, the most effective SAS was the MgCl2 + CTAB + AOS (i.e., 3500 ppm) solution. Moreover, the best foam was generated via MgCl2 + CTAB + AOS + N2 (i.e., 3500 ppm). Thereafter, the SWAF process yielded an incremental oil recovery of 42% of oil initially in place (OIIP), resulting in a cumulative oil recovery of 92% OIIP. Subsequently, utilizing the CMG-STARS simulator, the experimental coreflood was accurately history matched using the validated SWAF proposed model with a satisfactory error of only 6.7%. Under optimum conditions, it is anticipated that the newly proposed hybrid SWAF EOR-technique is more appealing from an economic and environmental standpoints. This work presents a workflow to mechanistically and experimentally determine the optimum conditions for the SWAF process in carbonates. The study also sheds insight into the mechanisms controlling the SWAF method and promotes designing successful field-scale pilots in carbonate reservoirs." @default.
- W4307665251 created "2022-11-04" @default.
- W4307665251 creator A5017288943 @default.
- W4307665251 creator A5044402103 @default.
- W4307665251 creator A5064446035 @default.
- W4307665251 creator A5078947975 @default.
- W4307665251 date "2022-10-31" @default.
- W4307665251 modified "2023-10-16" @default.
- W4307665251 title "Insights into Hybrid Smart Water Assisted Foam (SWAF) Flooding in Carbonate Reservoirs: A Combined Numerical and Experimental Approach" @default.
- W4307665251 cites W1171175635 @default.
- W4307665251 cites W1971636938 @default.
- W4307665251 cites W1980555190 @default.
- W4307665251 cites W1981118570 @default.
- W4307665251 cites W1987368619 @default.
- W4307665251 cites W1997783064 @default.
- W4307665251 cites W1998047811 @default.
- W4307665251 cites W1998791915 @default.
- W4307665251 cites W2001845574 @default.
- W4307665251 cites W2014827502 @default.
- W4307665251 cites W2016001353 @default.
- W4307665251 cites W2029508805 @default.
- W4307665251 cites W2030635479 @default.
- W4307665251 cites W2030831105 @default.
- W4307665251 cites W2034014097 @default.
- W4307665251 cites W2038845450 @default.
- W4307665251 cites W2040692275 @default.
- W4307665251 cites W2041953617 @default.
- W4307665251 cites W2044408861 @default.
- W4307665251 cites W2057857574 @default.
- W4307665251 cites W2058170548 @default.
- W4307665251 cites W2059579463 @default.
- W4307665251 cites W2066064511 @default.
- W4307665251 cites W2077007432 @default.
- W4307665251 cites W2078989973 @default.
- W4307665251 cites W2080165709 @default.
- W4307665251 cites W2081949346 @default.
- W4307665251 cites W2084625382 @default.
- W4307665251 cites W2107211173 @default.
- W4307665251 cites W2115999518 @default.
- W4307665251 cites W2119872552 @default.
- W4307665251 cites W2143611960 @default.
- W4307665251 cites W2150533561 @default.
- W4307665251 cites W2150903279 @default.
- W4307665251 cites W2180973311 @default.
- W4307665251 cites W2193099517 @default.
- W4307665251 cites W2312463337 @default.
- W4307665251 cites W2409584111 @default.
- W4307665251 cites W2735722976 @default.
- W4307665251 cites W2792700708 @default.
- W4307665251 cites W2901132865 @default.
- W4307665251 cites W2945464653 @default.
- W4307665251 cites W2949904417 @default.
- W4307665251 cites W2973803049 @default.
- W4307665251 cites W2982554450 @default.
- W4307665251 cites W3023835302 @default.
- W4307665251 cites W3039792234 @default.
- W4307665251 cites W3095848012 @default.
- W4307665251 cites W3137364790 @default.
- W4307665251 cites W4213361001 @default.
- W4307665251 cites W4220835374 @default.
- W4307665251 cites W4224283215 @default.
- W4307665251 cites W4301455501 @default.
- W4307665251 cites W3022039671 @default.
- W4307665251 doi "https://doi.org/10.2118/211439-ms" @default.
- W4307665251 hasPublicationYear "2022" @default.
- W4307665251 type Work @default.
- W4307665251 citedByCount "6" @default.
- W4307665251 countsByYear W43076652512023 @default.
- W4307665251 crossrefType "proceedings-article" @default.
- W4307665251 hasAuthorship W4307665251A5017288943 @default.
- W4307665251 hasAuthorship W4307665251A5044402103 @default.
- W4307665251 hasAuthorship W4307665251A5064446035 @default.
- W4307665251 hasAuthorship W4307665251A5078947975 @default.
- W4307665251 hasConcept C105569014 @default.
- W4307665251 hasConcept C113378726 @default.
- W4307665251 hasConcept C121332964 @default.
- W4307665251 hasConcept C127313418 @default.
- W4307665251 hasConcept C127413603 @default.
- W4307665251 hasConcept C134514944 @default.
- W4307665251 hasConcept C151730666 @default.
- W4307665251 hasConcept C159985019 @default.
- W4307665251 hasConcept C178790620 @default.
- W4307665251 hasConcept C185592680 @default.
- W4307665251 hasConcept C192562407 @default.
- W4307665251 hasConcept C21880701 @default.
- W4307665251 hasConcept C2776957854 @default.
- W4307665251 hasConcept C2779681308 @default.
- W4307665251 hasConcept C2780927383 @default.
- W4307665251 hasConcept C41008148 @default.
- W4307665251 hasConcept C42360764 @default.
- W4307665251 hasConcept C548895740 @default.
- W4307665251 hasConcept C58226133 @default.
- W4307665251 hasConcept C6556556 @default.
- W4307665251 hasConcept C6648577 @default.
- W4307665251 hasConcept C78762247 @default.
- W4307665251 hasConcept C8892853 @default.
- W4307665251 hasConcept C97355855 @default.
- W4307665251 hasConceptScore W4307665251C105569014 @default.
- W4307665251 hasConceptScore W4307665251C113378726 @default.
- W4307665251 hasConceptScore W4307665251C121332964 @default.