Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307687738> ?p ?o ?g. }
- W4307687738 abstract "Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to identify patients at high risk of recurrence have become even more critical. This study aims to assess the effectiveness of machine-learning algorithms in predicting melanoma recurrence using clinical and histopathologic features from Electronic Health Records (EHRs). We collected 1720 early-stage melanomas: 1172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI). We extracted 36 clinicopathologic features and used them to predict the recurrence risk with supervised machine-learning algorithms. Models were evaluated internally and externally: (1) five-fold cross-validation of the MGB cohort; (2) the MGB cohort for training and the DFCI cohort for testing independently. In the internal and external validations, respectively, we achieved a recurrence classification performance of AUC: 0.845 and 0.812, and a time-to-event prediction performance of time-dependent AUC: 0.853 and 0.820. Breslow tumor thickness and mitotic rate were identified as the most predictive features. Our results suggest that machine-learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients that may benefit from adjuvant immunotherapy." @default.
- W4307687738 created "2022-11-05" @default.
- W4307687738 creator A5002107948 @default.
- W4307687738 creator A5003382189 @default.
- W4307687738 creator A5009222009 @default.
- W4307687738 creator A5011747690 @default.
- W4307687738 creator A5025688013 @default.
- W4307687738 creator A5037565970 @default.
- W4307687738 creator A5042453814 @default.
- W4307687738 creator A5043587641 @default.
- W4307687738 creator A5044886059 @default.
- W4307687738 creator A5045552301 @default.
- W4307687738 creator A5055014444 @default.
- W4307687738 creator A5055719391 @default.
- W4307687738 creator A5058928111 @default.
- W4307687738 creator A5060561744 @default.
- W4307687738 creator A5061562703 @default.
- W4307687738 creator A5062872014 @default.
- W4307687738 creator A5063426870 @default.
- W4307687738 creator A5067123106 @default.
- W4307687738 creator A5069413418 @default.
- W4307687738 creator A5071349804 @default.
- W4307687738 creator A5072322836 @default.
- W4307687738 creator A5074337248 @default.
- W4307687738 creator A5080093777 @default.
- W4307687738 creator A5080226025 @default.
- W4307687738 creator A5081953757 @default.
- W4307687738 creator A5084747374 @default.
- W4307687738 creator A5087054405 @default.
- W4307687738 creator A5091512983 @default.
- W4307687738 date "2022-10-31" @default.
- W4307687738 modified "2023-10-18" @default.
- W4307687738 title "Prediction of early-stage melanoma recurrence using clinical and histopathologic features" @default.
- W4307687738 cites W125475685 @default.
- W4307687738 cites W1504813440 @default.
- W4307687738 cites W1678356000 @default.
- W4307687738 cites W1808460398 @default.
- W4307687738 cites W1979816698 @default.
- W4307687738 cites W1990120792 @default.
- W4307687738 cites W2017118506 @default.
- W4307687738 cites W2020041324 @default.
- W4307687738 cites W2025060250 @default.
- W4307687738 cites W2070493638 @default.
- W4307687738 cites W2106005668 @default.
- W4307687738 cites W2108267889 @default.
- W4307687738 cites W2111547563 @default.
- W4307687738 cites W2116394669 @default.
- W4307687738 cites W2118863192 @default.
- W4307687738 cites W2129925362 @default.
- W4307687738 cites W2149298154 @default.
- W4307687738 cites W2157076315 @default.
- W4307687738 cites W2237180596 @default.
- W4307687738 cites W2416750545 @default.
- W4307687738 cites W2519112485 @default.
- W4307687738 cites W2529245701 @default.
- W4307687738 cites W2563780449 @default.
- W4307687738 cites W2606664609 @default.
- W4307687738 cites W2748084541 @default.
- W4307687738 cites W2761218227 @default.
- W4307687738 cites W2762347490 @default.
- W4307687738 cites W2771421095 @default.
- W4307687738 cites W2806413494 @default.
- W4307687738 cites W2808814350 @default.
- W4307687738 cites W2888595717 @default.
- W4307687738 cites W2896845695 @default.
- W4307687738 cites W2911964244 @default.
- W4307687738 cites W2922275368 @default.
- W4307687738 cites W2937977449 @default.
- W4307687738 cites W2943229739 @default.
- W4307687738 cites W2950353203 @default.
- W4307687738 cites W3000943455 @default.
- W4307687738 cites W3015101370 @default.
- W4307687738 cites W3047804451 @default.
- W4307687738 cites W3137634582 @default.
- W4307687738 cites W3139326336 @default.
- W4307687738 cites W3151682852 @default.
- W4307687738 cites W3155147933 @default.
- W4307687738 cites W3200011659 @default.
- W4307687738 cites W3206364389 @default.
- W4307687738 cites W3215891851 @default.
- W4307687738 cites W4205572254 @default.
- W4307687738 cites W4210268530 @default.
- W4307687738 cites W4210301073 @default.
- W4307687738 cites W4210726429 @default.
- W4307687738 cites W4212962821 @default.
- W4307687738 cites W4214536914 @default.
- W4307687738 cites W4214842939 @default.
- W4307687738 cites W4220981995 @default.
- W4307687738 cites W4246259708 @default.
- W4307687738 cites W4253724883 @default.
- W4307687738 cites W4285984608 @default.
- W4307687738 cites W4286110619 @default.
- W4307687738 doi "https://doi.org/10.1038/s41698-022-00321-4" @default.
- W4307687738 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36316482" @default.
- W4307687738 hasPublicationYear "2022" @default.
- W4307687738 type Work @default.
- W4307687738 citedByCount "3" @default.
- W4307687738 countsByYear W43076877382023 @default.
- W4307687738 crossrefType "journal-article" @default.
- W4307687738 hasAuthorship W4307687738A5002107948 @default.