Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307688344> ?p ?o ?g. }
- W4307688344 endingPage "13996" @default.
- W4307688344 startingPage "13979" @default.
- W4307688344 abstract "Since fossil fuels are slowly depleting, bio and renewable energies are now given more attention. The main purpose of this research is to investigate and optimize the influencing parameters of bioenergy production through transesterification process. The application of artificial intelligence (AI) in bioenergy production studies has become increasingly popular due to its capability of interpreting nonlinear relationships between inputs and outputs for complex systems. Here, after conducting library studies and carefully reviewing the existing methods, the multi-layer perceptron (MLP), K-nearest neighbors (KNN), Artificial neural network (ANN), and Gaussian processes regression (GPR) models were selected for simulation and prediction of the efficiency of fatty acid methyl ester (FAME) production. The main effective transesterification parameters on production of biodiesel including the temperature of reaction (°C), catalyst mass to oil mass ratio (wt.%), and the molar ratio of methanol to oil were set as the input variables in all studied models. For reaction between oil and short chain alcohols, wollastonite (a calcium metasilicate, CaSiO3) was utilized as a phase boundary catalyst. By carefully selecting the execution conditions of the algorithms in the model selection phase, all three models reached a result above 0.99 and close to 1 with the square R criterion. Also, the RMSE values for the studied models were 3.95 for MLP, 1.09 for KNN, 0.13 for ANN and 3.60 for GPR models. Therefore, it can be concluded that although the ANN model was to be a better model in process efficiency prediction in terms of error, but all three algorithms had high accuracy because of different generality types. The optimum yield of 97.8% for FAME production was observed at optimum methanol to oil molar ratio, reaction temperature, and catalyst mass to oil mass ratio 65 °C, 15, and 9.21 wt%, respectively." @default.
- W4307688344 created "2022-11-05" @default.
- W4307688344 creator A5015394912 @default.
- W4307688344 creator A5028946953 @default.
- W4307688344 creator A5045511387 @default.
- W4307688344 creator A5064727471 @default.
- W4307688344 creator A5088000723 @default.
- W4307688344 date "2022-11-01" @default.
- W4307688344 modified "2023-10-14" @default.
- W4307688344 title "Optimization and analysis of bioenergy production using machine learning modeling: Multi-layer perceptron, Gaussian processes regression, K-nearest neighbors, and Artificial neural network models" @default.
- W4307688344 cites W2002342729 @default.
- W4307688344 cites W2011873184 @default.
- W4307688344 cites W2019182222 @default.
- W4307688344 cites W2022333790 @default.
- W4307688344 cites W2033301200 @default.
- W4307688344 cites W2044971859 @default.
- W4307688344 cites W2051812123 @default.
- W4307688344 cites W2057983092 @default.
- W4307688344 cites W2061002152 @default.
- W4307688344 cites W2088987376 @default.
- W4307688344 cites W2134936199 @default.
- W4307688344 cites W2157043635 @default.
- W4307688344 cites W2158585406 @default.
- W4307688344 cites W2587456632 @default.
- W4307688344 cites W2590885749 @default.
- W4307688344 cites W2620595718 @default.
- W4307688344 cites W2761529114 @default.
- W4307688344 cites W2765554657 @default.
- W4307688344 cites W2782331236 @default.
- W4307688344 cites W2795176283 @default.
- W4307688344 cites W2810183518 @default.
- W4307688344 cites W2899512833 @default.
- W4307688344 cites W2902505403 @default.
- W4307688344 cites W2937296275 @default.
- W4307688344 cites W2946296542 @default.
- W4307688344 cites W2959046283 @default.
- W4307688344 cites W2979299378 @default.
- W4307688344 cites W2981561446 @default.
- W4307688344 cites W3034176587 @default.
- W4307688344 cites W3114141273 @default.
- W4307688344 cites W3136033096 @default.
- W4307688344 cites W3157156897 @default.
- W4307688344 cites W3157167657 @default.
- W4307688344 cites W3158518266 @default.
- W4307688344 cites W3165144553 @default.
- W4307688344 cites W3168060791 @default.
- W4307688344 cites W3169408786 @default.
- W4307688344 cites W3174691411 @default.
- W4307688344 cites W3189164715 @default.
- W4307688344 cites W3190675037 @default.
- W4307688344 cites W3199018611 @default.
- W4307688344 cites W3201967790 @default.
- W4307688344 cites W3203984526 @default.
- W4307688344 cites W3207857423 @default.
- W4307688344 cites W3217588419 @default.
- W4307688344 cites W4200329135 @default.
- W4307688344 cites W4224325621 @default.
- W4307688344 cites W4296222799 @default.
- W4307688344 doi "https://doi.org/10.1016/j.egyr.2022.10.334" @default.
- W4307688344 hasPublicationYear "2022" @default.
- W4307688344 type Work @default.
- W4307688344 citedByCount "5" @default.
- W4307688344 countsByYear W43076883442023 @default.
- W4307688344 crossrefType "journal-article" @default.
- W4307688344 hasAuthorship W4307688344A5015394912 @default.
- W4307688344 hasAuthorship W4307688344A5028946953 @default.
- W4307688344 hasAuthorship W4307688344A5045511387 @default.
- W4307688344 hasAuthorship W4307688344A5064727471 @default.
- W4307688344 hasAuthorship W4307688344A5088000723 @default.
- W4307688344 hasBestOaLocation W43076883441 @default.
- W4307688344 hasConcept C105795698 @default.
- W4307688344 hasConcept C119857082 @default.
- W4307688344 hasConcept C139945424 @default.
- W4307688344 hasConcept C154945302 @default.
- W4307688344 hasConcept C161790260 @default.
- W4307688344 hasConcept C178790620 @default.
- W4307688344 hasConcept C179717631 @default.
- W4307688344 hasConcept C185592680 @default.
- W4307688344 hasConcept C2777241282 @default.
- W4307688344 hasConcept C2779607525 @default.
- W4307688344 hasConcept C33923547 @default.
- W4307688344 hasConcept C41008148 @default.
- W4307688344 hasConcept C50644808 @default.
- W4307688344 hasConcept C52896960 @default.
- W4307688344 hasConcept C55493867 @default.
- W4307688344 hasConcept C60908668 @default.
- W4307688344 hasConcept C66910140 @default.
- W4307688344 hasConceptScore W4307688344C105795698 @default.
- W4307688344 hasConceptScore W4307688344C119857082 @default.
- W4307688344 hasConceptScore W4307688344C139945424 @default.
- W4307688344 hasConceptScore W4307688344C154945302 @default.
- W4307688344 hasConceptScore W4307688344C161790260 @default.
- W4307688344 hasConceptScore W4307688344C178790620 @default.
- W4307688344 hasConceptScore W4307688344C179717631 @default.
- W4307688344 hasConceptScore W4307688344C185592680 @default.
- W4307688344 hasConceptScore W4307688344C2777241282 @default.
- W4307688344 hasConceptScore W4307688344C2779607525 @default.
- W4307688344 hasConceptScore W4307688344C33923547 @default.