Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307689479> ?p ?o ?g. }
- W4307689479 endingPage "232" @default.
- W4307689479 startingPage "221" @default.
- W4307689479 abstract "Recently, the interactions between internal solitary waves (ISWs) and the seabed have directed increasing attention to ocean engineering and offshore energy. In particular, ISWs induce bottom currents and pressure fluctuations in deep water. In this paper, we propose a method for predicting the shear stress induced by shoaling ISWs based on machine learning, and the developed approach can be used to quickly determine the safety and stability of ocean engineering. First, we provided a basic dataset for model training. Four machine learning models were selected to predict the shear stress induced by shoaling ISWs under different trim conditions. The results indicated that the performance of the convolutional neural network-long short-term memory (CNN-LSTM) forest prediction model was significantly better than the three other tested models, including long short-term memory (LSTM), support vector regression (SVR) and deep neural network (DNN) models. Therefore, the CNN-LSTM forest prediction model was the optimal model for predicting the shear stress induced by shoaling ISWs. Specifically, each metric of the CNN-LSTM model was smaller than that of the other three, and the root mean squared error to the standard deviation ratio was closest to 0.7. In addition, the CNN-LSTM model significantly outperformed the SVR and DNN models in terms of the length of prediction time. The predicted values by the CNN-LSTM model were consistent with the experimental values. The method for predicting shear stress based on machine learning in this paper can be used to predict the shear stress induced by shoaling ISWs, guide future field experiment designs, reduce damage to the seabed caused by ISWs, and promote the development of ocean engineering in deep water." @default.
- W4307689479 created "2022-11-05" @default.
- W4307689479 creator A5019500124 @default.
- W4307689479 creator A5026570208 @default.
- W4307689479 creator A5028725559 @default.
- W4307689479 creator A5044575556 @default.
- W4307689479 creator A5090789379 @default.
- W4307689479 date "2022-10-21" @default.
- W4307689479 modified "2023-10-18" @default.
- W4307689479 title "Prediction of shear stress induced by shoaling internal solitary waves based on machine learning method" @default.
- W4307689479 cites W1498436455 @default.
- W4307689479 cites W1546612333 @default.
- W4307689479 cites W1885020829 @default.
- W4307689479 cites W2002375358 @default.
- W4307689479 cites W2005708641 @default.
- W4307689479 cites W2024301989 @default.
- W4307689479 cites W2042860879 @default.
- W4307689479 cites W2053606766 @default.
- W4307689479 cites W2064675550 @default.
- W4307689479 cites W2076711241 @default.
- W4307689479 cites W2108700821 @default.
- W4307689479 cites W2112739286 @default.
- W4307689479 cites W2179079489 @default.
- W4307689479 cites W2284731747 @default.
- W4307689479 cites W2470821411 @default.
- W4307689479 cites W2605516844 @default.
- W4307689479 cites W2614421657 @default.
- W4307689479 cites W2760506659 @default.
- W4307689479 cites W2785071288 @default.
- W4307689479 cites W2885309195 @default.
- W4307689479 cites W2905872298 @default.
- W4307689479 cites W2907522752 @default.
- W4307689479 cites W2912731314 @default.
- W4307689479 cites W2915605322 @default.
- W4307689479 cites W2919115771 @default.
- W4307689479 cites W2942440036 @default.
- W4307689479 cites W2952247821 @default.
- W4307689479 cites W2958491333 @default.
- W4307689479 cites W2966097659 @default.
- W4307689479 cites W2980642669 @default.
- W4307689479 cites W3000616893 @default.
- W4307689479 cites W3005619874 @default.
- W4307689479 cites W3007705148 @default.
- W4307689479 cites W3012391712 @default.
- W4307689479 cites W3024071797 @default.
- W4307689479 cites W3034317626 @default.
- W4307689479 cites W3082958479 @default.
- W4307689479 cites W3113386282 @default.
- W4307689479 cites W3115103108 @default.
- W4307689479 cites W3132189050 @default.
- W4307689479 cites W3160538235 @default.
- W4307689479 cites W3197822946 @default.
- W4307689479 cites W3199049120 @default.
- W4307689479 cites W3199514852 @default.
- W4307689479 cites W3201502261 @default.
- W4307689479 cites W4224996688 @default.
- W4307689479 cites W4246754890 @default.
- W4307689479 doi "https://doi.org/10.1080/1064119x.2022.2136045" @default.
- W4307689479 hasPublicationYear "2022" @default.
- W4307689479 type Work @default.
- W4307689479 citedByCount "1" @default.
- W4307689479 countsByYear W43076894792023 @default.
- W4307689479 crossrefType "journal-article" @default.
- W4307689479 hasAuthorship W4307689479A5019500124 @default.
- W4307689479 hasAuthorship W4307689479A5026570208 @default.
- W4307689479 hasAuthorship W4307689479A5028725559 @default.
- W4307689479 hasAuthorship W4307689479A5044575556 @default.
- W4307689479 hasAuthorship W4307689479A5090789379 @default.
- W4307689479 hasConcept C111368507 @default.
- W4307689479 hasConcept C119857082 @default.
- W4307689479 hasConcept C12267149 @default.
- W4307689479 hasConcept C127313418 @default.
- W4307689479 hasConcept C154945302 @default.
- W4307689479 hasConcept C159985019 @default.
- W4307689479 hasConcept C192562407 @default.
- W4307689479 hasConcept C21141959 @default.
- W4307689479 hasConcept C41008148 @default.
- W4307689479 hasConcept C50644808 @default.
- W4307689479 hasConcept C74126248 @default.
- W4307689479 hasConcept C81363708 @default.
- W4307689479 hasConceptScore W4307689479C111368507 @default.
- W4307689479 hasConceptScore W4307689479C119857082 @default.
- W4307689479 hasConceptScore W4307689479C12267149 @default.
- W4307689479 hasConceptScore W4307689479C127313418 @default.
- W4307689479 hasConceptScore W4307689479C154945302 @default.
- W4307689479 hasConceptScore W4307689479C159985019 @default.
- W4307689479 hasConceptScore W4307689479C192562407 @default.
- W4307689479 hasConceptScore W4307689479C21141959 @default.
- W4307689479 hasConceptScore W4307689479C41008148 @default.
- W4307689479 hasConceptScore W4307689479C50644808 @default.
- W4307689479 hasConceptScore W4307689479C74126248 @default.
- W4307689479 hasConceptScore W4307689479C81363708 @default.
- W4307689479 hasIssue "2" @default.
- W4307689479 hasLocation W43076894791 @default.
- W4307689479 hasOpenAccess W4307689479 @default.
- W4307689479 hasPrimaryLocation W43076894791 @default.
- W4307689479 hasRelatedWork W1996541855 @default.
- W4307689479 hasRelatedWork W2937631562 @default.