Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307704630> ?p ?o ?g. }
- W4307704630 endingPage "5388" @default.
- W4307704630 startingPage "5388" @default.
- W4307704630 abstract "Leaf age is an important trait in the process of maize (Zea mays L.) growth. It is significant to estimate the seed activity and yield of maize by counting leaves. Detection and counting of the maize leaves in the field are very difficult due to the complexity of the field scenes and the cross-covering of adjacent seedling leaves. A method was proposed in this study for detecting and counting maize leaves based on deep learning with RGB images collected by unmanned aerial vehicles (UAVs). The Mask R-CNN was used to separate the complete maize seedlings from the complex background to reduce the impact of weeds on leaf counting. We proposed a new loss function SmoothLR for Mask R-CNN to improve the segmentation performance of the model. Then, YOLOv5 was used to detect and count the individual leaves of maize seedlings after segmentation. The 1005 field seedlings images were randomly divided into the training, validation, and test set with the ratio of 7:2:1. The results showed that the segmentation performance of Mask R-CNN with Resnet50 and SmoothLR was better than that with LI Loss. The average precision of the bounding box (Bbox) and mask (Mask) was 96.9% and 95.2%, respectively. The inference time of single image detection and segmentation was 0.05 s and 0.07 s, respectively. YOLOv5 performed better in leaf detection compared with Faster R-CNN and SSD. YOLOv5x with the largest parameter had the best detection performance. The detection precision of fully unfolded leaves and newly appeared leaves was 92.0% and 68.8%, and the recall rates were 84.4% and 50.0%, respectively. The average precision (AP) was 89.6% and 54.0%, respectively. The rates of counting accuracy for newly appeared leaves and fully unfolded leaves were 75.3% and 72.9%, respectively. The experimental results showed the possibility of current research on exploring leaf counting for field-grown crops based on UAV images." @default.
- W4307704630 created "2022-11-05" @default.
- W4307704630 creator A5009499207 @default.
- W4307704630 creator A5029484872 @default.
- W4307704630 creator A5032643990 @default.
- W4307704630 creator A5047923660 @default.
- W4307704630 creator A5048439007 @default.
- W4307704630 creator A5067406261 @default.
- W4307704630 creator A5071413978 @default.
- W4307704630 creator A5080616988 @default.
- W4307704630 date "2022-10-27" @default.
- W4307704630 modified "2023-09-30" @default.
- W4307704630 title "Detection and Counting of Maize Leaves Based on Two-Stage Deep Learning with UAV-Based RGB Image" @default.
- W4307704630 cites W2806070179 @default.
- W4307704630 cites W2939018547 @default.
- W4307704630 cites W2989421653 @default.
- W4307704630 cites W2999156891 @default.
- W4307704630 cites W3006816363 @default.
- W4307704630 cites W3013954566 @default.
- W4307704630 cites W3024506755 @default.
- W4307704630 cites W3026254524 @default.
- W4307704630 cites W3037893135 @default.
- W4307704630 cites W3047532279 @default.
- W4307704630 cites W3083985123 @default.
- W4307704630 cites W3087173802 @default.
- W4307704630 cites W3118053069 @default.
- W4307704630 cites W3129205255 @default.
- W4307704630 cites W3132120492 @default.
- W4307704630 cites W3132455321 @default.
- W4307704630 cites W3164012963 @default.
- W4307704630 cites W3167956273 @default.
- W4307704630 cites W3175012015 @default.
- W4307704630 cites W3175170407 @default.
- W4307704630 cites W3191773007 @default.
- W4307704630 cites W3192504607 @default.
- W4307704630 cites W3194292788 @default.
- W4307704630 cites W3195223586 @default.
- W4307704630 cites W3198519806 @default.
- W4307704630 cites W3199010270 @default.
- W4307704630 cites W3199269661 @default.
- W4307704630 cites W3199427309 @default.
- W4307704630 cites W3200988226 @default.
- W4307704630 cites W3204216133 @default.
- W4307704630 cites W3206704828 @default.
- W4307704630 cites W3212806947 @default.
- W4307704630 cites W3215261175 @default.
- W4307704630 cites W3215492909 @default.
- W4307704630 cites W4200042936 @default.
- W4307704630 cites W4200452644 @default.
- W4307704630 cites W4210574106 @default.
- W4307704630 cites W4211190605 @default.
- W4307704630 cites W4212773528 @default.
- W4307704630 cites W4212965978 @default.
- W4307704630 cites W4214890960 @default.
- W4307704630 cites W4220871058 @default.
- W4307704630 cites W4224324535 @default.
- W4307704630 cites W4225923495 @default.
- W4307704630 cites W4226213190 @default.
- W4307704630 cites W4280641669 @default.
- W4307704630 cites W4281480845 @default.
- W4307704630 cites W4283451728 @default.
- W4307704630 cites W4283579887 @default.
- W4307704630 cites W4283590945 @default.
- W4307704630 cites W4283705343 @default.
- W4307704630 cites W4283793798 @default.
- W4307704630 cites W4287882618 @default.
- W4307704630 cites W4290052392 @default.
- W4307704630 cites W4293581688 @default.
- W4307704630 cites W639708223 @default.
- W4307704630 doi "https://doi.org/10.3390/rs14215388" @default.
- W4307704630 hasPublicationYear "2022" @default.
- W4307704630 type Work @default.
- W4307704630 citedByCount "4" @default.
- W4307704630 countsByYear W43077046302023 @default.
- W4307704630 crossrefType "journal-article" @default.
- W4307704630 hasAuthorship W4307704630A5009499207 @default.
- W4307704630 hasAuthorship W4307704630A5029484872 @default.
- W4307704630 hasAuthorship W4307704630A5032643990 @default.
- W4307704630 hasAuthorship W4307704630A5047923660 @default.
- W4307704630 hasAuthorship W4307704630A5048439007 @default.
- W4307704630 hasAuthorship W4307704630A5067406261 @default.
- W4307704630 hasAuthorship W4307704630A5071413978 @default.
- W4307704630 hasAuthorship W4307704630A5080616988 @default.
- W4307704630 hasBestOaLocation W43077046301 @default.
- W4307704630 hasConcept C153180895 @default.
- W4307704630 hasConcept C154945302 @default.
- W4307704630 hasConcept C169903167 @default.
- W4307704630 hasConcept C2993531722 @default.
- W4307704630 hasConcept C31972630 @default.
- W4307704630 hasConcept C33923547 @default.
- W4307704630 hasConcept C41008148 @default.
- W4307704630 hasConcept C6557445 @default.
- W4307704630 hasConcept C82990744 @default.
- W4307704630 hasConcept C86803240 @default.
- W4307704630 hasConcept C89600930 @default.
- W4307704630 hasConceptScore W4307704630C153180895 @default.
- W4307704630 hasConceptScore W4307704630C154945302 @default.
- W4307704630 hasConceptScore W4307704630C169903167 @default.