Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307711972> ?p ?o ?g. }
- W4307711972 endingPage "131" @default.
- W4307711972 startingPage "109" @default.
- W4307711972 abstract "In e-learning, the increasing number of learning resources makes it difficult for learners to find suitable learning resources. In addition, learners may have different preferences and cognitive abilities for learning resources, where differences in learners’ cognitive abilities will lead to different importance of learning resources. Therefore, recommending personalized learning paths for learners has become a research hotspot. Considering learners’ preferences and the importance of learning resources, this paper proposes a learning path recommendation algorithm based on knowledge graph. We construct a multi-dimensional courses knowledge graph in computer field (MCCKG), and then propose a method based on graph convolutional network for modeling high-order correlations on the knowledge graph to more accurately capture learners’ preferences. Furthermore, the importance of learning resources is calculated by using the characteristics of learning resources in the MCCKG and learners’ characteristics. Finally, by weighting the two factors of learners’ preferences and the importance of learning resources, we recommend the optimal learning path for learners. Our method is evaluated from the aspects of learner’s satisfaction, algorithm effectiveness, etc. The experimental results show that the method proposed in this paper can recommend a personalized learning path to satisfy the needs of learners, thus reducing the workload of manually planning learning paths." @default.
- W4307711972 created "2022-11-05" @default.
- W4307711972 creator A5016719995 @default.
- W4307711972 creator A5032802508 @default.
- W4307711972 creator A5091381220 @default.
- W4307711972 date "2022-12-22" @default.
- W4307711972 modified "2023-09-29" @default.
- W4307711972 title "Personalized Learning Path Recommendation for E-Learning Based on Knowledge Graph and Graph Convolutional Network" @default.
- W4307711972 cites W2118382442 @default.
- W4307711972 cites W2337506561 @default.
- W4307711972 cites W2469952266 @default.
- W4307711972 cites W2508444123 @default.
- W4307711972 cites W2523684327 @default.
- W4307711972 cites W2750225358 @default.
- W4307711972 cites W2769170041 @default.
- W4307711972 cites W2791327891 @default.
- W4307711972 cites W2898379875 @default.
- W4307711972 cites W2904810378 @default.
- W4307711972 cites W2945623882 @default.
- W4307711972 cites W2953819997 @default.
- W4307711972 cites W2962254071 @default.
- W4307711972 cites W2980414158 @default.
- W4307711972 cites W3004766324 @default.
- W4307711972 cites W3106439716 @default.
- W4307711972 cites W3130343671 @default.
- W4307711972 cites W3134991359 @default.
- W4307711972 cites W3163731277 @default.
- W4307711972 cites W3177049808 @default.
- W4307711972 cites W3202595024 @default.
- W4307711972 doi "https://doi.org/10.1142/s0218194022500681" @default.
- W4307711972 hasPublicationYear "2022" @default.
- W4307711972 type Work @default.
- W4307711972 citedByCount "2" @default.
- W4307711972 countsByYear W43077119722023 @default.
- W4307711972 crossrefType "journal-article" @default.
- W4307711972 hasAuthorship W4307711972A5016719995 @default.
- W4307711972 hasAuthorship W4307711972A5032802508 @default.
- W4307711972 hasAuthorship W4307711972A5091381220 @default.
- W4307711972 hasConcept C119857082 @default.
- W4307711972 hasConcept C12298181 @default.
- W4307711972 hasConcept C126838900 @default.
- W4307711972 hasConcept C132525143 @default.
- W4307711972 hasConcept C142039133 @default.
- W4307711972 hasConcept C145420912 @default.
- W4307711972 hasConcept C15122004 @default.
- W4307711972 hasConcept C154945302 @default.
- W4307711972 hasConcept C162324750 @default.
- W4307711972 hasConcept C183115368 @default.
- W4307711972 hasConcept C187736073 @default.
- W4307711972 hasConcept C188888258 @default.
- W4307711972 hasConcept C19966478 @default.
- W4307711972 hasConcept C2780451532 @default.
- W4307711972 hasConcept C28006648 @default.
- W4307711972 hasConcept C33923547 @default.
- W4307711972 hasConcept C41008148 @default.
- W4307711972 hasConcept C51672120 @default.
- W4307711972 hasConcept C71924100 @default.
- W4307711972 hasConcept C80444323 @default.
- W4307711972 hasConcept C88610354 @default.
- W4307711972 hasConcept C90509273 @default.
- W4307711972 hasConceptScore W4307711972C119857082 @default.
- W4307711972 hasConceptScore W4307711972C12298181 @default.
- W4307711972 hasConceptScore W4307711972C126838900 @default.
- W4307711972 hasConceptScore W4307711972C132525143 @default.
- W4307711972 hasConceptScore W4307711972C142039133 @default.
- W4307711972 hasConceptScore W4307711972C145420912 @default.
- W4307711972 hasConceptScore W4307711972C15122004 @default.
- W4307711972 hasConceptScore W4307711972C154945302 @default.
- W4307711972 hasConceptScore W4307711972C162324750 @default.
- W4307711972 hasConceptScore W4307711972C183115368 @default.
- W4307711972 hasConceptScore W4307711972C187736073 @default.
- W4307711972 hasConceptScore W4307711972C188888258 @default.
- W4307711972 hasConceptScore W4307711972C19966478 @default.
- W4307711972 hasConceptScore W4307711972C2780451532 @default.
- W4307711972 hasConceptScore W4307711972C28006648 @default.
- W4307711972 hasConceptScore W4307711972C33923547 @default.
- W4307711972 hasConceptScore W4307711972C41008148 @default.
- W4307711972 hasConceptScore W4307711972C51672120 @default.
- W4307711972 hasConceptScore W4307711972C71924100 @default.
- W4307711972 hasConceptScore W4307711972C80444323 @default.
- W4307711972 hasConceptScore W4307711972C88610354 @default.
- W4307711972 hasConceptScore W4307711972C90509273 @default.
- W4307711972 hasFunder F4320322163 @default.
- W4307711972 hasIssue "01" @default.
- W4307711972 hasLocation W43077119721 @default.
- W4307711972 hasOpenAccess W4307711972 @default.
- W4307711972 hasPrimaryLocation W43077119721 @default.
- W4307711972 hasRelatedWork W1812322370 @default.
- W4307711972 hasRelatedWork W2597787948 @default.
- W4307711972 hasRelatedWork W2784094750 @default.
- W4307711972 hasRelatedWork W2961085424 @default.
- W4307711972 hasRelatedWork W3047894882 @default.
- W4307711972 hasRelatedWork W3200098538 @default.
- W4307711972 hasRelatedWork W3208584567 @default.
- W4307711972 hasRelatedWork W4285160008 @default.
- W4307711972 hasRelatedWork W4319309271 @default.
- W4307711972 hasRelatedWork W4366320140 @default.
- W4307711972 hasVolume "33" @default.