Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307744072> ?p ?o ?g. }
- W4307744072 endingPage "e1010660" @default.
- W4307744072 startingPage "e1010660" @default.
- W4307744072 abstract "Many genetic mutations adversely affect the structure and function of load-bearing soft tissues, with clinical sequelae often responsible for disability or death. Parallel advances in genetics and histomechanical characterization provide significant insight into these conditions, but there remains a pressing need to integrate such information. We present a novel genotype-to-biomechanical-phenotype neural network (G2{Phi}net) for characterizing and classifying biomechanical properties of soft tissues, which serve as important functional readouts of tissue health or disease. We illustrate the utility of our approach by inferring the nonlinear, genotype-dependent constitutive behavior of the aorta for four mouse models involving defects or deficiencies in extracellular constituents. We show that G2{Phi}net can infer the biomechanical response while simultaneously ascribing the associated genotype correctly by utilizing limited, noisy, and unstructured experimental data. More broadly, G2{Phi}net provides a powerful method and a paradigm shift for correlating genotype and biomechanical phenotype quantitatively, promising a better understanding of their interplay in biological tissues." @default.
- W4307744072 created "2022-11-05" @default.
- W4307744072 creator A5009658255 @default.
- W4307744072 creator A5014180482 @default.
- W4307744072 creator A5018930557 @default.
- W4307744072 creator A5061668124 @default.
- W4307744072 date "2022-10-31" @default.
- W4307744072 modified "2023-10-14" @default.
- W4307744072 title "G2Φnet: Relating genotype and biomechanical phenotype of tissues with deep learning" @default.
- W4307744072 cites W1985233782 @default.
- W4307744072 cites W1993744211 @default.
- W4307744072 cites W1995954566 @default.
- W4307744072 cites W2001102891 @default.
- W4307744072 cites W2014124805 @default.
- W4307744072 cites W2037115738 @default.
- W4307744072 cites W2050292374 @default.
- W4307744072 cites W2067202687 @default.
- W4307744072 cites W2071007487 @default.
- W4307744072 cites W2079738970 @default.
- W4307744072 cites W2093609973 @default.
- W4307744072 cites W2100637998 @default.
- W4307744072 cites W2118522871 @default.
- W4307744072 cites W2128531352 @default.
- W4307744072 cites W2132485433 @default.
- W4307744072 cites W2133706890 @default.
- W4307744072 cites W2157331557 @default.
- W4307744072 cites W2214934803 @default.
- W4307744072 cites W2405653653 @default.
- W4307744072 cites W2480924511 @default.
- W4307744072 cites W2573540928 @default.
- W4307744072 cites W2594216518 @default.
- W4307744072 cites W2594653562 @default.
- W4307744072 cites W2613488122 @default.
- W4307744072 cites W2770808473 @default.
- W4307744072 cites W2896989207 @default.
- W4307744072 cites W2899946397 @default.
- W4307744072 cites W2950521115 @default.
- W4307744072 cites W2963881378 @default.
- W4307744072 cites W2964199361 @default.
- W4307744072 cites W2964309882 @default.
- W4307744072 cites W2996028791 @default.
- W4307744072 cites W3008827944 @default.
- W4307744072 cites W3011714719 @default.
- W4307744072 cites W3022973855 @default.
- W4307744072 cites W3028009715 @default.
- W4307744072 cites W3028072861 @default.
- W4307744072 cites W3086358797 @default.
- W4307744072 cites W3108491918 @default.
- W4307744072 cites W3134515731 @default.
- W4307744072 cites W3137240924 @default.
- W4307744072 cites W3137474564 @default.
- W4307744072 cites W3157127629 @default.
- W4307744072 cites W3164550729 @default.
- W4307744072 cites W3167256391 @default.
- W4307744072 cites W3170283681 @default.
- W4307744072 cites W3170539680 @default.
- W4307744072 cites W3172378095 @default.
- W4307744072 cites W3184794683 @default.
- W4307744072 cites W3197438865 @default.
- W4307744072 cites W3199814420 @default.
- W4307744072 cites W3201666041 @default.
- W4307744072 cites W3202010588 @default.
- W4307744072 cites W4200633382 @default.
- W4307744072 cites W4210423197 @default.
- W4307744072 cites W4210888884 @default.
- W4307744072 cites W4213199992 @default.
- W4307744072 cites W4213290918 @default.
- W4307744072 cites W4221152086 @default.
- W4307744072 cites W4294170298 @default.
- W4307744072 cites W4310497802 @default.
- W4307744072 cites W58419149 @default.
- W4307744072 doi "https://doi.org/10.1371/journal.pcbi.1010660" @default.
- W4307744072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36315608" @default.
- W4307744072 hasPublicationYear "2022" @default.
- W4307744072 type Work @default.
- W4307744072 citedByCount "3" @default.
- W4307744072 countsByYear W43077440722023 @default.
- W4307744072 crossrefType "journal-article" @default.
- W4307744072 hasAuthorship W4307744072A5009658255 @default.
- W4307744072 hasAuthorship W4307744072A5014180482 @default.
- W4307744072 hasAuthorship W4307744072A5018930557 @default.
- W4307744072 hasAuthorship W4307744072A5061668124 @default.
- W4307744072 hasBestOaLocation W43077440721 @default.
- W4307744072 hasConcept C104317684 @default.
- W4307744072 hasConcept C127716648 @default.
- W4307744072 hasConcept C135763542 @default.
- W4307744072 hasConcept C14036430 @default.
- W4307744072 hasConcept C142724271 @default.
- W4307744072 hasConcept C169760540 @default.
- W4307744072 hasConcept C2779134260 @default.
- W4307744072 hasConcept C54355233 @default.
- W4307744072 hasConcept C60644358 @default.
- W4307744072 hasConcept C70721500 @default.
- W4307744072 hasConcept C71924100 @default.
- W4307744072 hasConcept C78458016 @default.
- W4307744072 hasConcept C86803240 @default.
- W4307744072 hasConceptScore W4307744072C104317684 @default.
- W4307744072 hasConceptScore W4307744072C127716648 @default.