Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307751489> ?p ?o ?g. }
- W4307751489 endingPage "11054" @default.
- W4307751489 startingPage "11054" @default.
- W4307751489 abstract "Organizations engaged in business, regardless of the industry in which they operate, must be able to extract knowledge from the data available to them. Often the volume of customer and supplier data is so large, the use of advanced data mining algorithms is required. In particular, machine learning algorithms make it possible to build predictive models in order to forecast customer demand and, consequently, optimize the management of supplies and warehouse logistics. We base our analysis on the use of the XGBoost as a predictive model, since this is now considered to provide the more efficient implementation of gradient boosting, shown with a numerical comparison. Preliminary tests lead to the conclusion that the XGBoost regression model is more accurate in predicting future sales in terms of various error metrics, such as MSE (Mean Square Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and WAPE (Weighted Absolute Percentage Error). In particular, the improvement measured in tests using WAPE metric is in the range 15–20%." @default.
- W4307751489 created "2022-11-05" @default.
- W4307751489 creator A5023894224 @default.
- W4307751489 creator A5026798329 @default.
- W4307751489 creator A5039147821 @default.
- W4307751489 creator A5050020272 @default.
- W4307751489 date "2022-10-31" @default.
- W4307751489 modified "2023-09-30" @default.
- W4307751489 title "Developing and Preliminary Testing of a Machine Learning-Based Platform for Sales Forecasting Using a Gradient Boosting Approach" @default.
- W4307751489 cites W1678356000 @default.
- W4307751489 cites W2088794999 @default.
- W4307751489 cites W2106100548 @default.
- W4307751489 cites W2177299793 @default.
- W4307751489 cites W2309497016 @default.
- W4307751489 cites W2653022485 @default.
- W4307751489 cites W2758325595 @default.
- W4307751489 cites W2787894218 @default.
- W4307751489 cites W2807315672 @default.
- W4307751489 cites W2901657898 @default.
- W4307751489 cites W2921679040 @default.
- W4307751489 cites W2947788863 @default.
- W4307751489 cites W2970160078 @default.
- W4307751489 cites W2971659559 @default.
- W4307751489 cites W3016730371 @default.
- W4307751489 cites W3021635481 @default.
- W4307751489 cites W3081491601 @default.
- W4307751489 cites W3102218249 @default.
- W4307751489 cites W3114216167 @default.
- W4307751489 cites W3135141542 @default.
- W4307751489 cites W3138239626 @default.
- W4307751489 cites W3153805502 @default.
- W4307751489 cites W3156434410 @default.
- W4307751489 cites W3195865780 @default.
- W4307751489 cites W3201266848 @default.
- W4307751489 cites W3202947993 @default.
- W4307751489 cites W3208968656 @default.
- W4307751489 cites W4230275901 @default.
- W4307751489 cites W4281696066 @default.
- W4307751489 cites W4281702443 @default.
- W4307751489 cites W4283204591 @default.
- W4307751489 cites W4285815501 @default.
- W4307751489 cites W4289109875 @default.
- W4307751489 cites W4294838988 @default.
- W4307751489 cites W4303699965 @default.
- W4307751489 cites W4303709772 @default.
- W4307751489 doi "https://doi.org/10.3390/app122111054" @default.
- W4307751489 hasPublicationYear "2022" @default.
- W4307751489 type Work @default.
- W4307751489 citedByCount "1" @default.
- W4307751489 countsByYear W43077514892023 @default.
- W4307751489 crossrefType "journal-article" @default.
- W4307751489 hasAuthorship W4307751489A5023894224 @default.
- W4307751489 hasAuthorship W4307751489A5026798329 @default.
- W4307751489 hasAuthorship W4307751489A5039147821 @default.
- W4307751489 hasAuthorship W4307751489A5050020272 @default.
- W4307751489 hasBestOaLocation W43077514891 @default.
- W4307751489 hasConcept C105795698 @default.
- W4307751489 hasConcept C119857082 @default.
- W4307751489 hasConcept C124101348 @default.
- W4307751489 hasConcept C127413603 @default.
- W4307751489 hasConcept C139945424 @default.
- W4307751489 hasConcept C144133560 @default.
- W4307751489 hasConcept C149782125 @default.
- W4307751489 hasConcept C150217764 @default.
- W4307751489 hasConcept C154945302 @default.
- W4307751489 hasConcept C162853370 @default.
- W4307751489 hasConcept C167085575 @default.
- W4307751489 hasConcept C169258074 @default.
- W4307751489 hasConcept C176217482 @default.
- W4307751489 hasConcept C188154048 @default.
- W4307751489 hasConcept C21547014 @default.
- W4307751489 hasConcept C2777276756 @default.
- W4307751489 hasConcept C2984642479 @default.
- W4307751489 hasConcept C33923547 @default.
- W4307751489 hasConcept C41008148 @default.
- W4307751489 hasConcept C45804977 @default.
- W4307751489 hasConcept C46686674 @default.
- W4307751489 hasConcept C50644808 @default.
- W4307751489 hasConcept C70153297 @default.
- W4307751489 hasConcept C83209312 @default.
- W4307751489 hasConcept C83546350 @default.
- W4307751489 hasConceptScore W4307751489C105795698 @default.
- W4307751489 hasConceptScore W4307751489C119857082 @default.
- W4307751489 hasConceptScore W4307751489C124101348 @default.
- W4307751489 hasConceptScore W4307751489C127413603 @default.
- W4307751489 hasConceptScore W4307751489C139945424 @default.
- W4307751489 hasConceptScore W4307751489C144133560 @default.
- W4307751489 hasConceptScore W4307751489C149782125 @default.
- W4307751489 hasConceptScore W4307751489C150217764 @default.
- W4307751489 hasConceptScore W4307751489C154945302 @default.
- W4307751489 hasConceptScore W4307751489C162853370 @default.
- W4307751489 hasConceptScore W4307751489C167085575 @default.
- W4307751489 hasConceptScore W4307751489C169258074 @default.
- W4307751489 hasConceptScore W4307751489C176217482 @default.
- W4307751489 hasConceptScore W4307751489C188154048 @default.
- W4307751489 hasConceptScore W4307751489C21547014 @default.
- W4307751489 hasConceptScore W4307751489C2777276756 @default.
- W4307751489 hasConceptScore W4307751489C2984642479 @default.