Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307816801> ?p ?o ?g. }
- W4307816801 endingPage "107357" @default.
- W4307816801 startingPage "107357" @default.
- W4307816801 abstract "The purpose of this paper is to analyse fatigue crack growth under mixed mode conditions using artificial neural networks. Mixed mode conditions were achieved using a four-point bending specimen, with different notch positions, and a modified compact tension specimen, with one hole using different diameters and centre coordinates. Finite element analysis simulations, using the vector crack tip displacement propagation criterion, were used to train the artificial neural networks. Once fully trained, the artificial neural networks were able to predict fatigue crack growth paths and lives under mixed mode conditions, showing good agreement with both experimental and numerical examples." @default.
- W4307816801 created "2022-11-06" @default.
- W4307816801 creator A5013239707 @default.
- W4307816801 creator A5013758180 @default.
- W4307816801 creator A5025145717 @default.
- W4307816801 date "2023-02-01" @default.
- W4307816801 modified "2023-09-26" @default.
- W4307816801 title "Fatigue crack growth on modified CT specimens using artificial neural networks" @default.
- W4307816801 cites W1969591790 @default.
- W4307816801 cites W1970692257 @default.
- W4307816801 cites W1972043202 @default.
- W4307816801 cites W1977002251 @default.
- W4307816801 cites W1980021623 @default.
- W4307816801 cites W1996705349 @default.
- W4307816801 cites W2006100706 @default.
- W4307816801 cites W2020259992 @default.
- W4307816801 cites W2067878879 @default.
- W4307816801 cites W2070129862 @default.
- W4307816801 cites W2071569271 @default.
- W4307816801 cites W2072086953 @default.
- W4307816801 cites W2072242581 @default.
- W4307816801 cites W2077812891 @default.
- W4307816801 cites W2095478524 @default.
- W4307816801 cites W2118044606 @default.
- W4307816801 cites W2131421041 @default.
- W4307816801 cites W2163427648 @default.
- W4307816801 cites W2297929186 @default.
- W4307816801 cites W2571121506 @default.
- W4307816801 cites W2804730725 @default.
- W4307816801 cites W2808955892 @default.
- W4307816801 cites W2910656785 @default.
- W4307816801 cites W2911476800 @default.
- W4307816801 cites W2937439300 @default.
- W4307816801 cites W2946020210 @default.
- W4307816801 cites W2955330026 @default.
- W4307816801 cites W2963985990 @default.
- W4307816801 cites W2979488672 @default.
- W4307816801 cites W2984720876 @default.
- W4307816801 cites W2997676850 @default.
- W4307816801 cites W3004105349 @default.
- W4307816801 cites W3012784468 @default.
- W4307816801 cites W3043051009 @default.
- W4307816801 cites W3046839063 @default.
- W4307816801 cites W3046970727 @default.
- W4307816801 cites W3048989976 @default.
- W4307816801 cites W3082758367 @default.
- W4307816801 cites W3084200341 @default.
- W4307816801 cites W3092179965 @default.
- W4307816801 cites W3096655077 @default.
- W4307816801 cites W3113060123 @default.
- W4307816801 cites W3145174082 @default.
- W4307816801 cites W3170462085 @default.
- W4307816801 cites W3171764157 @default.
- W4307816801 cites W3186075706 @default.
- W4307816801 cites W3217564845 @default.
- W4307816801 cites W4205249048 @default.
- W4307816801 cites W4206982455 @default.
- W4307816801 cites W2048571692 @default.
- W4307816801 doi "https://doi.org/10.1016/j.ijfatigue.2022.107357" @default.
- W4307816801 hasPublicationYear "2023" @default.
- W4307816801 type Work @default.
- W4307816801 citedByCount "2" @default.
- W4307816801 countsByYear W43078168012023 @default.
- W4307816801 crossrefType "journal-article" @default.
- W4307816801 hasAuthorship W4307816801A5013239707 @default.
- W4307816801 hasAuthorship W4307816801A5013758180 @default.
- W4307816801 hasAuthorship W4307816801A5025145717 @default.
- W4307816801 hasConcept C107551265 @default.
- W4307816801 hasConcept C111919701 @default.
- W4307816801 hasConcept C112950240 @default.
- W4307816801 hasConcept C127413603 @default.
- W4307816801 hasConcept C135628077 @default.
- W4307816801 hasConcept C154945302 @default.
- W4307816801 hasConcept C15744967 @default.
- W4307816801 hasConcept C159985019 @default.
- W4307816801 hasConcept C186068551 @default.
- W4307816801 hasConcept C192562407 @default.
- W4307816801 hasConcept C2524010 @default.
- W4307816801 hasConcept C28719098 @default.
- W4307816801 hasConcept C2986550218 @default.
- W4307816801 hasConcept C33923547 @default.
- W4307816801 hasConcept C41008148 @default.
- W4307816801 hasConcept C48677424 @default.
- W4307816801 hasConcept C50644808 @default.
- W4307816801 hasConcept C51830879 @default.
- W4307816801 hasConcept C542102704 @default.
- W4307816801 hasConcept C59085676 @default.
- W4307816801 hasConcept C66938386 @default.
- W4307816801 hasConcept C69809600 @default.
- W4307816801 hasConcept C75512024 @default.
- W4307816801 hasConcept C87210426 @default.
- W4307816801 hasConceptScore W4307816801C107551265 @default.
- W4307816801 hasConceptScore W4307816801C111919701 @default.
- W4307816801 hasConceptScore W4307816801C112950240 @default.
- W4307816801 hasConceptScore W4307816801C127413603 @default.
- W4307816801 hasConceptScore W4307816801C135628077 @default.
- W4307816801 hasConceptScore W4307816801C154945302 @default.
- W4307816801 hasConceptScore W4307816801C15744967 @default.