Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307820573> ?p ?o ?g. }
- W4307820573 endingPage "109735" @default.
- W4307820573 startingPage "109735" @default.
- W4307820573 abstract "Research on the performance of tropical residential buildings requires careful consideration of the effects of the changing weather conditions. Based on machine learning and multi-objective genetic optimization algorithms, this study proposes an integrated framework for predicting and optimizing the performance of residential buildings in Singapore. The framework was used for two Singapore residential building types, the point block building and the slab block building, to examine their optimal performance in terms of daylight performance, energy efficiency, and thermal comfort under future climate conditions in the short term (2021–2040), middle term (2041–2060), and long term (2061–2100). The results show that the XGBoost algorithm and transfer learning method perform well in building performance prediction, specifically in the source domain (point block buildings) with R 2 = 0.95 and in the target domain (slab block building) with R 2 = 0.87. The general trend in the optimal design parameters for residential buildings is to enhance the thermal insulation of building walls and envelopes to better cope with future warming climate conditions, while providing adequate indoor lighting. This study contributes to the field of climate-resilient residential buildings in Singapore. This is closely linked to the Singapore government's quest for sustainable development and to enhance the well-being of its residents. • Future hourly weather data was generated using the ‘morphing’ method for Singapore. • Building performance datasets were generated for both types of residential buildings. • The XGBoost algorithm exhibited higher prediction accuracy than other algorithms. • Transfer learning was applied to improve the generalization of predictions. • Multi-objective optimizations were performed under future weather conditions." @default.
- W4307820573 created "2022-11-06" @default.
- W4307820573 creator A5000481797 @default.
- W4307820573 creator A5011672837 @default.
- W4307820573 creator A5084387930 @default.
- W4307820573 date "2022-12-01" @default.
- W4307820573 modified "2023-09-29" @default.
- W4307820573 title "Data-driven prediction and optimization of residential building performance in Singapore considering the impact of climate change" @default.
- W4307820573 cites W1995735211 @default.
- W4307820573 cites W2049867362 @default.
- W4307820573 cites W2054818191 @default.
- W4307820573 cites W2057331441 @default.
- W4307820573 cites W2058100150 @default.
- W4307820573 cites W2108152153 @default.
- W4307820573 cites W2776741657 @default.
- W4307820573 cites W2790271464 @default.
- W4307820573 cites W2792046648 @default.
- W4307820573 cites W2896273130 @default.
- W4307820573 cites W2910602795 @default.
- W4307820573 cites W2914736264 @default.
- W4307820573 cites W2952475000 @default.
- W4307820573 cites W2965755482 @default.
- W4307820573 cites W2974823166 @default.
- W4307820573 cites W2985763515 @default.
- W4307820573 cites W2995474641 @default.
- W4307820573 cites W3000003127 @default.
- W4307820573 cites W3006420689 @default.
- W4307820573 cites W3087230708 @default.
- W4307820573 cites W3097014986 @default.
- W4307820573 cites W3108169787 @default.
- W4307820573 cites W3122220845 @default.
- W4307820573 cites W3123703295 @default.
- W4307820573 cites W3124047225 @default.
- W4307820573 cites W3132263092 @default.
- W4307820573 cites W3133253569 @default.
- W4307820573 cites W3155167951 @default.
- W4307820573 cites W3173263630 @default.
- W4307820573 cites W3175071190 @default.
- W4307820573 cites W3175120302 @default.
- W4307820573 cites W3176033047 @default.
- W4307820573 cites W3181638476 @default.
- W4307820573 cites W3183838547 @default.
- W4307820573 cites W3189349817 @default.
- W4307820573 cites W3189401566 @default.
- W4307820573 cites W3201118926 @default.
- W4307820573 cites W3214347576 @default.
- W4307820573 cites W4200188006 @default.
- W4307820573 cites W4200499416 @default.
- W4307820573 cites W4200571268 @default.
- W4307820573 cites W4206696802 @default.
- W4307820573 cites W4210905597 @default.
- W4307820573 cites W4223931665 @default.
- W4307820573 cites W4224947570 @default.
- W4307820573 cites W4225282955 @default.
- W4307820573 doi "https://doi.org/10.1016/j.buildenv.2022.109735" @default.
- W4307820573 hasPublicationYear "2022" @default.
- W4307820573 type Work @default.
- W4307820573 citedByCount "3" @default.
- W4307820573 countsByYear W43078205732023 @default.
- W4307820573 crossrefType "journal-article" @default.
- W4307820573 hasAuthorship W4307820573A5000481797 @default.
- W4307820573 hasAuthorship W4307820573A5011672837 @default.
- W4307820573 hasAuthorship W4307820573A5084387930 @default.
- W4307820573 hasConcept C107826830 @default.
- W4307820573 hasConcept C111368507 @default.
- W4307820573 hasConcept C127313418 @default.
- W4307820573 hasConcept C127413603 @default.
- W4307820573 hasConcept C132651083 @default.
- W4307820573 hasConcept C153294291 @default.
- W4307820573 hasConcept C170154142 @default.
- W4307820573 hasConcept C205649164 @default.
- W4307820573 hasConcept C39432304 @default.
- W4307820573 hasConcept C41008148 @default.
- W4307820573 hasConcept C49204034 @default.
- W4307820573 hasConceptScore W4307820573C107826830 @default.
- W4307820573 hasConceptScore W4307820573C111368507 @default.
- W4307820573 hasConceptScore W4307820573C127313418 @default.
- W4307820573 hasConceptScore W4307820573C127413603 @default.
- W4307820573 hasConceptScore W4307820573C132651083 @default.
- W4307820573 hasConceptScore W4307820573C153294291 @default.
- W4307820573 hasConceptScore W4307820573C170154142 @default.
- W4307820573 hasConceptScore W4307820573C205649164 @default.
- W4307820573 hasConceptScore W4307820573C39432304 @default.
- W4307820573 hasConceptScore W4307820573C41008148 @default.
- W4307820573 hasConceptScore W4307820573C49204034 @default.
- W4307820573 hasLocation W43078205731 @default.
- W4307820573 hasOpenAccess W4307820573 @default.
- W4307820573 hasPrimaryLocation W43078205731 @default.
- W4307820573 hasRelatedWork W1965953496 @default.
- W4307820573 hasRelatedWork W2043781919 @default.
- W4307820573 hasRelatedWork W2077927310 @default.
- W4307820573 hasRelatedWork W2167860608 @default.
- W4307820573 hasRelatedWork W2331625077 @default.
- W4307820573 hasRelatedWork W2333405669 @default.
- W4307820573 hasRelatedWork W2748952813 @default.
- W4307820573 hasRelatedWork W2800949407 @default.
- W4307820573 hasRelatedWork W2899084033 @default.
- W4307820573 hasRelatedWork W3208854956 @default.