Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307875530> ?p ?o ?g. }
- W4307875530 endingPage "4629" @default.
- W4307875530 startingPage "4601" @default.
- W4307875530 abstract "The objective of crime prediction, one of the most important technologies in social computing, is to extract useful information from many existing criminal records to predict the next process-related crime. It can aid the police in obtaining criminal information and warn the public to be vigilant in certain areas. With the rapid growth of big data, the Internet of Things, and other technologies, as well as the increasing use of artificial intelligence in forecasting models, crime prediction models based on deep learning techniques are accelerating. Therefore, it is necessary to classify the existing crime prediction algorithms and compare in depth the attributes and conditions that play an essential role in the analysis of crime prediction algorithms. Existing crime prediction methods can be roughly divided into two categories: those based on conventional machine learning and those based on contemporary deep learning. This survey analyses the fundamental theories and procedures. The most frequently used data sets are then enumerated, and the fundamental procedures of various algorithms are also analyzed in this paper. In light of the insufficient scale of existing data in this field, the ambiguity of data types used to predict crimes, and the absence of public data sets that have a significant impact on the research of algorithm models, this survey proposes the construction of a machine learning-based big data research model to address these issues. Future researchers who will enter this field are provided with a guide to the direction of future research development." @default.
- W4307875530 created "2022-11-06" @default.
- W4307875530 creator A5011144900 @default.
- W4307875530 date "2023-01-01" @default.
- W4307875530 modified "2023-09-25" @default.
- W4307875530 title "Crime Prediction Methods Based on Machine Learning: A Survey" @default.
- W4307875530 cites W1501362048 @default.
- W4307875530 cites W155738341 @default.
- W4307875530 cites W2002370654 @default.
- W4307875530 cites W2009912562 @default.
- W4307875530 cites W2071358782 @default.
- W4307875530 cites W2086260676 @default.
- W4307875530 cites W2140334956 @default.
- W4307875530 cites W2321540385 @default.
- W4307875530 cites W2607541615 @default.
- W4307875530 cites W2766158373 @default.
- W4307875530 cites W2771505171 @default.
- W4307875530 cites W2775402959 @default.
- W4307875530 cites W2806045169 @default.
- W4307875530 cites W2810894220 @default.
- W4307875530 cites W2884502219 @default.
- W4307875530 cites W2905101279 @default.
- W4307875530 cites W2920329036 @default.
- W4307875530 cites W2953538266 @default.
- W4307875530 cites W2955946004 @default.
- W4307875530 cites W2963190848 @default.
- W4307875530 cites W2966542220 @default.
- W4307875530 cites W2983165041 @default.
- W4307875530 cites W3007769290 @default.
- W4307875530 cites W3010191872 @default.
- W4307875530 cites W3017373806 @default.
- W4307875530 cites W3020622509 @default.
- W4307875530 cites W3036317400 @default.
- W4307875530 cites W3107905525 @default.
- W4307875530 cites W3135993269 @default.
- W4307875530 cites W3158174949 @default.
- W4307875530 cites W3162886737 @default.
- W4307875530 cites W3171974369 @default.
- W4307875530 cites W3174364370 @default.
- W4307875530 cites W3181834696 @default.
- W4307875530 cites W3200249736 @default.
- W4307875530 cites W3202825773 @default.
- W4307875530 cites W3203220486 @default.
- W4307875530 cites W3205286134 @default.
- W4307875530 cites W3206164484 @default.
- W4307875530 cites W3206912558 @default.
- W4307875530 cites W4200422752 @default.
- W4307875530 cites W4210410888 @default.
- W4307875530 cites W4210709463 @default.
- W4307875530 cites W4210759194 @default.
- W4307875530 cites W4220926084 @default.
- W4307875530 cites W4286240436 @default.
- W4307875530 doi "https://doi.org/10.32604/cmc.2023.034190" @default.
- W4307875530 hasPublicationYear "2023" @default.
- W4307875530 type Work @default.
- W4307875530 citedByCount "0" @default.
- W4307875530 crossrefType "journal-article" @default.
- W4307875530 hasAuthorship W4307875530A5011144900 @default.
- W4307875530 hasBestOaLocation W43078755301 @default.
- W4307875530 hasConcept C108583219 @default.
- W4307875530 hasConcept C110875604 @default.
- W4307875530 hasConcept C111919701 @default.
- W4307875530 hasConcept C112972136 @default.
- W4307875530 hasConcept C119857082 @default.
- W4307875530 hasConcept C124101348 @default.
- W4307875530 hasConcept C136764020 @default.
- W4307875530 hasConcept C144024400 @default.
- W4307875530 hasConcept C154945302 @default.
- W4307875530 hasConcept C199360897 @default.
- W4307875530 hasConcept C202444582 @default.
- W4307875530 hasConcept C205649164 @default.
- W4307875530 hasConcept C2522767166 @default.
- W4307875530 hasConcept C2776876444 @default.
- W4307875530 hasConcept C2778755073 @default.
- W4307875530 hasConcept C2780522230 @default.
- W4307875530 hasConcept C33923547 @default.
- W4307875530 hasConcept C41008148 @default.
- W4307875530 hasConcept C58640448 @default.
- W4307875530 hasConcept C73484699 @default.
- W4307875530 hasConcept C75684735 @default.
- W4307875530 hasConcept C9652623 @default.
- W4307875530 hasConcept C98045186 @default.
- W4307875530 hasConceptScore W4307875530C108583219 @default.
- W4307875530 hasConceptScore W4307875530C110875604 @default.
- W4307875530 hasConceptScore W4307875530C111919701 @default.
- W4307875530 hasConceptScore W4307875530C112972136 @default.
- W4307875530 hasConceptScore W4307875530C119857082 @default.
- W4307875530 hasConceptScore W4307875530C124101348 @default.
- W4307875530 hasConceptScore W4307875530C136764020 @default.
- W4307875530 hasConceptScore W4307875530C144024400 @default.
- W4307875530 hasConceptScore W4307875530C154945302 @default.
- W4307875530 hasConceptScore W4307875530C199360897 @default.
- W4307875530 hasConceptScore W4307875530C202444582 @default.
- W4307875530 hasConceptScore W4307875530C205649164 @default.
- W4307875530 hasConceptScore W4307875530C2522767166 @default.
- W4307875530 hasConceptScore W4307875530C2776876444 @default.
- W4307875530 hasConceptScore W4307875530C2778755073 @default.
- W4307875530 hasConceptScore W4307875530C2780522230 @default.