Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307888923> ?p ?o ?g. }
- W4307888923 abstract "Abstract Multi-omic data analysis incorporating machine learning has the potential to significantly improve cancer diagnosis and prognosis. Traditional machine learning methods are usually limited to omic measurements, omitting existing domain knowledge such as the biological networks that link molecular entities in various omic data types. We develop a Transformer-based explainable deep learning model, DeePathNet, which integrates cancer-specific pathway information into multi-omic data analysis. Using a variety of big datasets, including ProCan-DepMapSanger, CCLE and TCGA, we show that DeePathNet outperforms traditional methods for the prediction of drug response and classification of cancer type and subtype. Combining biomedical knowledge and state-of-the-art deep learning methods, DeePathNet enables biomarker discovery at the pathway level, maximising the power of data-driven approaches to cancer research. DeePathNet is available on GitHub at https://github.com/CMRI-ProCan/DeePathNet ." @default.
- W4307888923 created "2022-11-06" @default.
- W4307888923 creator A5005523254 @default.
- W4307888923 creator A5026383310 @default.
- W4307888923 creator A5040251587 @default.
- W4307888923 creator A5042172727 @default.
- W4307888923 creator A5050482798 @default.
- W4307888923 creator A5074492686 @default.
- W4307888923 date "2022-10-31" @default.
- W4307888923 modified "2023-10-12" @default.
- W4307888923 title "Transformer-based deep learning integrates multi-omic data with cancer pathways" @default.
- W4307888923 cites W1787224781 @default.
- W4307888923 cites W1856497061 @default.
- W4307888923 cites W1930624869 @default.
- W4307888923 cites W1935010198 @default.
- W4307888923 cites W1967320885 @default.
- W4307888923 cites W2062029454 @default.
- W4307888923 cites W2122825543 @default.
- W4307888923 cites W2132619562 @default.
- W4307888923 cites W2218734540 @default.
- W4307888923 cites W2262414037 @default.
- W4307888923 cites W2417496231 @default.
- W4307888923 cites W2461427403 @default.
- W4307888923 cites W2765219164 @default.
- W4307888923 cites W2773915534 @default.
- W4307888923 cites W2783685429 @default.
- W4307888923 cites W2790179710 @default.
- W4307888923 cites W2905810301 @default.
- W4307888923 cites W2909472027 @default.
- W4307888923 cites W2944727022 @default.
- W4307888923 cites W2947669958 @default.
- W4307888923 cites W2950985821 @default.
- W4307888923 cites W2963413355 @default.
- W4307888923 cites W3001475835 @default.
- W4307888923 cites W3003192283 @default.
- W4307888923 cites W3004480399 @default.
- W4307888923 cites W3006308011 @default.
- W4307888923 cites W3014115276 @default.
- W4307888923 cites W3094540299 @default.
- W4307888923 cites W3104755560 @default.
- W4307888923 cites W3139601120 @default.
- W4307888923 cites W3151381390 @default.
- W4307888923 cites W3156270925 @default.
- W4307888923 cites W3173599183 @default.
- W4307888923 cites W3173875945 @default.
- W4307888923 cites W3177828909 @default.
- W4307888923 cites W3188077199 @default.
- W4307888923 cites W3213224786 @default.
- W4307888923 cites W4205263585 @default.
- W4307888923 cites W4206956476 @default.
- W4307888923 cites W4210257598 @default.
- W4307888923 cites W4214929667 @default.
- W4307888923 cites W4252676770 @default.
- W4307888923 cites W4280614777 @default.
- W4307888923 cites W4285404371 @default.
- W4307888923 cites W4306955484 @default.
- W4307888923 doi "https://doi.org/10.1101/2022.10.27.514141" @default.
- W4307888923 hasPublicationYear "2022" @default.
- W4307888923 type Work @default.
- W4307888923 citedByCount "1" @default.
- W4307888923 crossrefType "posted-content" @default.
- W4307888923 hasAuthorship W4307888923A5005523254 @default.
- W4307888923 hasAuthorship W4307888923A5026383310 @default.
- W4307888923 hasAuthorship W4307888923A5040251587 @default.
- W4307888923 hasAuthorship W4307888923A5042172727 @default.
- W4307888923 hasAuthorship W4307888923A5050482798 @default.
- W4307888923 hasAuthorship W4307888923A5074492686 @default.
- W4307888923 hasBestOaLocation W43078889231 @default.
- W4307888923 hasConcept C104317684 @default.
- W4307888923 hasConcept C108583219 @default.
- W4307888923 hasConcept C119857082 @default.
- W4307888923 hasConcept C124101348 @default.
- W4307888923 hasConcept C124535831 @default.
- W4307888923 hasConcept C138958017 @default.
- W4307888923 hasConcept C154945302 @default.
- W4307888923 hasConcept C157585117 @default.
- W4307888923 hasConcept C199360897 @default.
- W4307888923 hasConcept C41008148 @default.
- W4307888923 hasConcept C46111723 @default.
- W4307888923 hasConcept C55493867 @default.
- W4307888923 hasConcept C60644358 @default.
- W4307888923 hasConcept C70721500 @default.
- W4307888923 hasConcept C75684735 @default.
- W4307888923 hasConcept C86803240 @default.
- W4307888923 hasConceptScore W4307888923C104317684 @default.
- W4307888923 hasConceptScore W4307888923C108583219 @default.
- W4307888923 hasConceptScore W4307888923C119857082 @default.
- W4307888923 hasConceptScore W4307888923C124101348 @default.
- W4307888923 hasConceptScore W4307888923C124535831 @default.
- W4307888923 hasConceptScore W4307888923C138958017 @default.
- W4307888923 hasConceptScore W4307888923C154945302 @default.
- W4307888923 hasConceptScore W4307888923C157585117 @default.
- W4307888923 hasConceptScore W4307888923C199360897 @default.
- W4307888923 hasConceptScore W4307888923C41008148 @default.
- W4307888923 hasConceptScore W4307888923C46111723 @default.
- W4307888923 hasConceptScore W4307888923C55493867 @default.
- W4307888923 hasConceptScore W4307888923C60644358 @default.
- W4307888923 hasConceptScore W4307888923C70721500 @default.
- W4307888923 hasConceptScore W4307888923C75684735 @default.
- W4307888923 hasConceptScore W4307888923C86803240 @default.