Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307904227> ?p ?o ?g. }
- W4307904227 endingPage "119145" @default.
- W4307904227 startingPage "119145" @default.
- W4307904227 abstract "During natural disasters or accidents, an emergency logistics network aims to ensure the distribution of relief supplies to victims in time and efficiently. When the coronavirus disease 2019 (COVID-19) emerged, the government closed the outbreak areas to control the risk of transmission. The closed areas were divided into high-risk and middle-/low-risk areas, and travel restrictions were enforced in the different risk areas. The distribution of daily essential supplies to residents in the closed areas became a major challenge for the government. This study introduces a new variant of the vehicle routing problem with travel restrictions in closed areas called the two-echelon emergency vehicle routing problem with time window assignment (2E-EVRPTWA). 2E-EVRPTWA involves transporting goods from distribution centers (DCs) to satellites in high-risk areas in the first echelon and delivering goods from DCs or satellites to customers in the second echelon. Vehicle sharing and time window assignment (TWA) strategies are applied to optimize the transportation resource configuration and improve the operational efficiency of the emergency logistics network. A tri-objective mathematical model for 2E-EVRPTWA is also constructed to minimize the total operating cost, total delivery time, and number of vehicles. A multi-objective adaptive large neighborhood search with split algorithm (MOALNS-SA) is proposed to obtain the Pareto optimal solution for 2E-EVRPTWA. The split algorithm (SA) calculates the objective values associated with each solution and assigns multiple trips to shared vehicles. A non-dominated sorting strategy is used to retain the optimal labels obtained with the SA algorithm and evaluate the quality of the multi-objective solution. The TWA strategy embedded in MOALNS-SA assigns appropriate candidate time windows to customers. The proposed MOALNS-SA produces results that are comparable with the CPLEX solver and those of the self-learning non-dominated sorting genetic algorithm-II, multi-objective ant colony algorithm, and multi-objective particle swarm optimization algorithm for 2E-EVRPTWA. A real-world COVID-19 case study from Chongqing City, China, is performed to test the performance of the proposed model and algorithm. This study helps the government and logistics enterprises design an efficient, collaborative, emergency logistics network, and promote the healthy and sustainable development of cities." @default.
- W4307904227 created "2022-11-06" @default.
- W4307904227 creator A5033443211 @default.
- W4307904227 creator A5044757881 @default.
- W4307904227 creator A5056670962 @default.
- W4307904227 creator A5064420962 @default.
- W4307904227 creator A5088285684 @default.
- W4307904227 date "2023-03-01" @default.
- W4307904227 modified "2023-10-13" @default.
- W4307904227 title "Emergency logistics network optimization with time window assignment" @default.
- W4307904227 cites W1778127384 @default.
- W4307904227 cites W1843716693 @default.
- W4307904227 cites W1877228522 @default.
- W4307904227 cites W1965882376 @default.
- W4307904227 cites W1970028321 @default.
- W4307904227 cites W1971006328 @default.
- W4307904227 cites W2019024746 @default.
- W4307904227 cites W2023470442 @default.
- W4307904227 cites W2054358980 @default.
- W4307904227 cites W2054585614 @default.
- W4307904227 cites W2081708500 @default.
- W4307904227 cites W2096305430 @default.
- W4307904227 cites W2105002757 @default.
- W4307904227 cites W2107646419 @default.
- W4307904227 cites W2119601963 @default.
- W4307904227 cites W2121220939 @default.
- W4307904227 cites W2126105956 @default.
- W4307904227 cites W2143299520 @default.
- W4307904227 cites W2173705339 @default.
- W4307904227 cites W2177916571 @default.
- W4307904227 cites W2178125162 @default.
- W4307904227 cites W2184496859 @default.
- W4307904227 cites W2217940165 @default.
- W4307904227 cites W2274664589 @default.
- W4307904227 cites W2332834184 @default.
- W4307904227 cites W2379012095 @default.
- W4307904227 cites W2462551600 @default.
- W4307904227 cites W2529339987 @default.
- W4307904227 cites W2533267447 @default.
- W4307904227 cites W2742261706 @default.
- W4307904227 cites W2753434807 @default.
- W4307904227 cites W2791446441 @default.
- W4307904227 cites W2794104595 @default.
- W4307904227 cites W2802448051 @default.
- W4307904227 cites W2806248386 @default.
- W4307904227 cites W2808845378 @default.
- W4307904227 cites W2856829278 @default.
- W4307904227 cites W2885759267 @default.
- W4307904227 cites W2907520637 @default.
- W4307904227 cites W2912805700 @default.
- W4307904227 cites W2914374758 @default.
- W4307904227 cites W2925063426 @default.
- W4307904227 cites W2966864247 @default.
- W4307904227 cites W2990554003 @default.
- W4307904227 cites W3006380536 @default.
- W4307904227 cites W3014585394 @default.
- W4307904227 cites W3031416784 @default.
- W4307904227 cites W3035279594 @default.
- W4307904227 cites W3036183921 @default.
- W4307904227 cites W3038102300 @default.
- W4307904227 cites W3040019279 @default.
- W4307904227 cites W3043149053 @default.
- W4307904227 cites W3081905775 @default.
- W4307904227 cites W3086706112 @default.
- W4307904227 cites W3091540783 @default.
- W4307904227 cites W3092652491 @default.
- W4307904227 cites W3102822570 @default.
- W4307904227 cites W3109116363 @default.
- W4307904227 cites W3129550985 @default.
- W4307904227 cites W3129685771 @default.
- W4307904227 cites W3129729546 @default.
- W4307904227 cites W3130612522 @default.
- W4307904227 cites W3137017601 @default.
- W4307904227 cites W3154944814 @default.
- W4307904227 cites W3166618313 @default.
- W4307904227 cites W3167676165 @default.
- W4307904227 cites W3173865922 @default.
- W4307904227 cites W3185544865 @default.
- W4307904227 cites W3197046373 @default.
- W4307904227 cites W3197830172 @default.
- W4307904227 cites W3198114050 @default.
- W4307904227 cites W3201170522 @default.
- W4307904227 cites W3201271285 @default.
- W4307904227 cites W3201299303 @default.
- W4307904227 cites W3207316367 @default.
- W4307904227 cites W3208417036 @default.
- W4307904227 cites W4200580718 @default.
- W4307904227 cites W4205415001 @default.
- W4307904227 cites W4213318779 @default.
- W4307904227 cites W4214815674 @default.
- W4307904227 doi "https://doi.org/10.1016/j.eswa.2022.119145" @default.
- W4307904227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36339965" @default.
- W4307904227 hasPublicationYear "2023" @default.
- W4307904227 type Work @default.
- W4307904227 citedByCount "2" @default.
- W4307904227 countsByYear W43079042272023 @default.
- W4307904227 crossrefType "journal-article" @default.
- W4307904227 hasAuthorship W4307904227A5033443211 @default.