Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307905798> ?p ?o ?g. }
- W4307905798 endingPage "173" @default.
- W4307905798 startingPage "163" @default.
- W4307905798 abstract "To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.Artificial intelligence (convolutional neural networks) study.This study included 5352 SD-OCT scans and 10-2 VF pairs from 1365 eyes of 724 healthy patients, patients with suspected glaucoma, and patients with glaucoma. Convolutional neural networks (CNNs) were developed to estimate the 68 individual sensitivity thresholds of 10-2 VF map using all-sectors (CNNA) and temporal-sectors (CNNT) RNFL thickness information of the SD-OCT circle scan (768 thickness points). 10-2 indices including pointwise total deviation (TD) values, mean deviation (MD), and pattern standard deviation (PSD) were generated using the CNN-estimated sensitivity thresholds at individual test locations. Linear regression (LR) models with the same input were used for comparison.The CNNA model achieved an average pointwise mean absolute error of 4.04 dB (95% confidence interval [CI] 3.76-4.35) and correlation coefficient (r) of 0.59 (95% CI 0.52-0.64) over 10-2 map and the mean absolute error and r of 2.88 dB (95% CI 2.63-3.15) and 0.74 (95% CI 0.67-0.80) for MD, and 2.31 dB (95% CI 2.03-2.61) and 0.59 (95% CI 0.51-0.65) for PSD estimations, respectively, significantly outperforming the LRA model.The proposed CNNA model improved the estimation of 10-2 VF map based on circumpapillary SD-OCT RNFL thickness measurements. These artificial intelligence methods using SD-OCT structural data show promise to individualize the frequency of central VF assessment in patients with glaucoma and would enable the reallocation of resources from patients at lowest risk to those at highest risk of central VF damage." @default.
- W4307905798 created "2022-11-06" @default.
- W4307905798 creator A5000878202 @default.
- W4307905798 creator A5001851056 @default.
- W4307905798 creator A5004613074 @default.
- W4307905798 creator A5007053702 @default.
- W4307905798 creator A5016855297 @default.
- W4307905798 creator A5030554277 @default.
- W4307905798 creator A5041711889 @default.
- W4307905798 creator A5043994887 @default.
- W4307905798 creator A5060182079 @default.
- W4307905798 creator A5063363976 @default.
- W4307905798 creator A5071360328 @default.
- W4307905798 creator A5078510537 @default.
- W4307905798 creator A5082809595 @default.
- W4307905798 date "2023-02-01" @default.
- W4307905798 modified "2023-09-26" @default.
- W4307905798 title "Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements" @default.
- W4307905798 cites W1983493711 @default.
- W4307905798 cites W1989239239 @default.
- W4307905798 cites W1993389605 @default.
- W4307905798 cites W2009602821 @default.
- W4307905798 cites W2009627538 @default.
- W4307905798 cites W2018784944 @default.
- W4307905798 cites W2022231013 @default.
- W4307905798 cites W2029934959 @default.
- W4307905798 cites W2031931139 @default.
- W4307905798 cites W2034742711 @default.
- W4307905798 cites W2043991271 @default.
- W4307905798 cites W2064553894 @default.
- W4307905798 cites W2073973115 @default.
- W4307905798 cites W2079837905 @default.
- W4307905798 cites W2082246284 @default.
- W4307905798 cites W2106168155 @default.
- W4307905798 cites W2128959641 @default.
- W4307905798 cites W2330222554 @default.
- W4307905798 cites W2345604857 @default.
- W4307905798 cites W2521776509 @default.
- W4307905798 cites W2529858135 @default.
- W4307905798 cites W2617311671 @default.
- W4307905798 cites W2619593713 @default.
- W4307905798 cites W2736850289 @default.
- W4307905798 cites W2769846024 @default.
- W4307905798 cites W2787463110 @default.
- W4307905798 cites W2801971352 @default.
- W4307905798 cites W2808983097 @default.
- W4307905798 cites W2977922008 @default.
- W4307905798 cites W3014603366 @default.
- W4307905798 cites W3022946576 @default.
- W4307905798 cites W3037488700 @default.
- W4307905798 cites W3041379475 @default.
- W4307905798 cites W3122325337 @default.
- W4307905798 cites W3159098702 @default.
- W4307905798 cites W3195980497 @default.
- W4307905798 cites W3217730778 @default.
- W4307905798 cites W4212944981 @default.
- W4307905798 doi "https://doi.org/10.1016/j.ajo.2022.10.013" @default.
- W4307905798 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36328198" @default.
- W4307905798 hasPublicationYear "2023" @default.
- W4307905798 type Work @default.
- W4307905798 citedByCount "2" @default.
- W4307905798 countsByYear W43079057982023 @default.
- W4307905798 crossrefType "journal-article" @default.
- W4307905798 hasAuthorship W4307905798A5000878202 @default.
- W4307905798 hasAuthorship W4307905798A5001851056 @default.
- W4307905798 hasAuthorship W4307905798A5004613074 @default.
- W4307905798 hasAuthorship W4307905798A5007053702 @default.
- W4307905798 hasAuthorship W4307905798A5016855297 @default.
- W4307905798 hasAuthorship W4307905798A5030554277 @default.
- W4307905798 hasAuthorship W4307905798A5041711889 @default.
- W4307905798 hasAuthorship W4307905798A5043994887 @default.
- W4307905798 hasAuthorship W4307905798A5060182079 @default.
- W4307905798 hasAuthorship W4307905798A5063363976 @default.
- W4307905798 hasAuthorship W4307905798A5071360328 @default.
- W4307905798 hasAuthorship W4307905798A5078510537 @default.
- W4307905798 hasAuthorship W4307905798A5082809595 @default.
- W4307905798 hasConcept C105795698 @default.
- W4307905798 hasConcept C118487528 @default.
- W4307905798 hasConcept C120934525 @default.
- W4307905798 hasConcept C127413603 @default.
- W4307905798 hasConcept C134306372 @default.
- W4307905798 hasConcept C154945302 @default.
- W4307905798 hasConcept C21200559 @default.
- W4307905798 hasConcept C22679943 @default.
- W4307905798 hasConcept C24326235 @default.
- W4307905798 hasConcept C2776058522 @default.
- W4307905798 hasConcept C2777984123 @default.
- W4307905798 hasConcept C2778527774 @default.
- W4307905798 hasConcept C2778818243 @default.
- W4307905798 hasConcept C2780592520 @default.
- W4307905798 hasConcept C2780827179 @default.
- W4307905798 hasConcept C2780837183 @default.
- W4307905798 hasConcept C2989005 @default.
- W4307905798 hasConcept C33923547 @default.
- W4307905798 hasConcept C41008148 @default.
- W4307905798 hasConcept C44249647 @default.
- W4307905798 hasConcept C71924100 @default.
- W4307905798 hasConcept C81363708 @default.