Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307905908> ?p ?o ?g. }
- W4307905908 endingPage "108777" @default.
- W4307905908 startingPage "108777" @default.
- W4307905908 abstract "Decision support tools, within the Industry 4.0 perspective, have increasingly impacted different operations and supply chain management (OSCM) areas, such as inventory management. Within the digital transformation era, multicriteria decision-making (MCDM) and machine learning (ML) can be used to improve inventory management decisions. Despite their importance, the literature lacks empirical studies involving advanced solutions that combine both approaches to support practitioners in real-life settings. This is especially relevant for maintenance, repair, and operation (MRO) inventories, which usually present several SKUs with irregular demand patterns and difficult forecasting. Therefore, this study proposes a decision support framework for inventory management, combining MCDM and ML approaches, and applies it to a railway logistics operator to assist its MRO inventory management decision-making process. The first stage of the framework consists of applying a hybrid MCDM method that combines fuzzy logic with the analytic hierarchy process (AHP) and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods to rank and select SKUs according to importance and criticality. Once the most critical SKUs are revealed, a second stage of the framework is introduced to forecast the demand for these SKUs through an ML model, which combines a genetic algorithm and an artificial neural network (GA-ANN). Research findings point to a considerable improvement in the accuracy of the demand forecast for SKUs compared to the previous forecast by the company, and the forecasting methods support vector machine (SVM) and exponential smoothing. The results of the combined approaches are consolidated into a management dashboard, which improves the agility and quality of the analyzed company's decision-making process in inventory management. Therefore, practitioners can also take stock of the proposed framework as a semi-automatic management artefact to enhance decision-making from a digital transformation view in a vital area of OSCM." @default.
- W4307905908 created "2022-11-06" @default.
- W4307905908 creator A5009010496 @default.
- W4307905908 creator A5016950841 @default.
- W4307905908 creator A5025218273 @default.
- W4307905908 creator A5029436374 @default.
- W4307905908 creator A5038590275 @default.
- W4307905908 date "2022-12-01" @default.
- W4307905908 modified "2023-10-14" @default.
- W4307905908 title "Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network" @default.
- W4307905908 cites W1586335931 @default.
- W4307905908 cites W1870408560 @default.
- W4307905908 cites W1968475341 @default.
- W4307905908 cites W1970432968 @default.
- W4307905908 cites W1973402019 @default.
- W4307905908 cites W1992845451 @default.
- W4307905908 cites W2000822992 @default.
- W4307905908 cites W2004698524 @default.
- W4307905908 cites W2010598419 @default.
- W4307905908 cites W2044391169 @default.
- W4307905908 cites W2053652165 @default.
- W4307905908 cites W2054008322 @default.
- W4307905908 cites W2056736038 @default.
- W4307905908 cites W2065109455 @default.
- W4307905908 cites W2065213709 @default.
- W4307905908 cites W2073515924 @default.
- W4307905908 cites W2079404401 @default.
- W4307905908 cites W2080913375 @default.
- W4307905908 cites W2087571931 @default.
- W4307905908 cites W2090526711 @default.
- W4307905908 cites W2092258928 @default.
- W4307905908 cites W2097710885 @default.
- W4307905908 cites W2099639456 @default.
- W4307905908 cites W2101289506 @default.
- W4307905908 cites W2111947987 @default.
- W4307905908 cites W2151591750 @default.
- W4307905908 cites W2167426749 @default.
- W4307905908 cites W2411732960 @default.
- W4307905908 cites W2415375246 @default.
- W4307905908 cites W2561638654 @default.
- W4307905908 cites W2608804829 @default.
- W4307905908 cites W2610386536 @default.
- W4307905908 cites W2797822011 @default.
- W4307905908 cites W2799849244 @default.
- W4307905908 cites W2803310372 @default.
- W4307905908 cites W2808873517 @default.
- W4307905908 cites W2810713013 @default.
- W4307905908 cites W2894999754 @default.
- W4307905908 cites W2902758677 @default.
- W4307905908 cites W2904426414 @default.
- W4307905908 cites W2904815033 @default.
- W4307905908 cites W2914951003 @default.
- W4307905908 cites W2956111096 @default.
- W4307905908 cites W2991560774 @default.
- W4307905908 cites W2997254491 @default.
- W4307905908 cites W3008696509 @default.
- W4307905908 cites W3012096460 @default.
- W4307905908 cites W3014191625 @default.
- W4307905908 cites W3035172297 @default.
- W4307905908 cites W3035294201 @default.
- W4307905908 cites W3042832119 @default.
- W4307905908 cites W3046060794 @default.
- W4307905908 cites W3088610680 @default.
- W4307905908 cites W3131537898 @default.
- W4307905908 cites W3184770056 @default.
- W4307905908 cites W3201483817 @default.
- W4307905908 cites W4206268801 @default.
- W4307905908 cites W871346165 @default.
- W4307905908 doi "https://doi.org/10.1016/j.cie.2022.108777" @default.
- W4307905908 hasPublicationYear "2022" @default.
- W4307905908 type Work @default.
- W4307905908 citedByCount "2" @default.
- W4307905908 countsByYear W43079059082023 @default.
- W4307905908 crossrefType "journal-article" @default.
- W4307905908 hasAuthorship W4307905908A5009010496 @default.
- W4307905908 hasAuthorship W4307905908A5016950841 @default.
- W4307905908 hasAuthorship W4307905908A5025218273 @default.
- W4307905908 hasAuthorship W4307905908A5029436374 @default.
- W4307905908 hasAuthorship W4307905908A5038590275 @default.
- W4307905908 hasConcept C107327155 @default.
- W4307905908 hasConcept C119857082 @default.
- W4307905908 hasConcept C124101348 @default.
- W4307905908 hasConcept C127413603 @default.
- W4307905908 hasConcept C154945302 @default.
- W4307905908 hasConcept C41008148 @default.
- W4307905908 hasConcept C42475967 @default.
- W4307905908 hasConcept C50644808 @default.
- W4307905908 hasConcept C58166 @default.
- W4307905908 hasConcept C8880873 @default.
- W4307905908 hasConceptScore W4307905908C107327155 @default.
- W4307905908 hasConceptScore W4307905908C119857082 @default.
- W4307905908 hasConceptScore W4307905908C124101348 @default.
- W4307905908 hasConceptScore W4307905908C127413603 @default.
- W4307905908 hasConceptScore W4307905908C154945302 @default.
- W4307905908 hasConceptScore W4307905908C41008148 @default.
- W4307905908 hasConceptScore W4307905908C42475967 @default.
- W4307905908 hasConceptScore W4307905908C50644808 @default.
- W4307905908 hasConceptScore W4307905908C58166 @default.