Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307905923> ?p ?o ?g. }
- W4307905923 endingPage "106239" @default.
- W4307905923 startingPage "106239" @default.
- W4307905923 abstract "Real-world optimization problems require some advanced metaheuristic algorithms, which functionally sustain a variety of solutions and technically explore the tracking space to find the global optimal solution or optimizer. One such algorithm is the newly developed COOT algorithm that is used to solve complex optimization problems. However, like other swarm intelligence algorithms, the COOT algorithm also faces the issues of low diversity, slow iteration speed, and stagnation in local optimization. In order to ameliorate these deficiencies, an improved population-initialized COOT algorithm named COBHCOOT is developed by integrating chaos map, opposition-based learning strategy and hunting strategy, which are used to accelerate the global convergence speed and boost the exploration efficiency and solution quality of the algorithm. To validate the dominance of the proposed COBHCOOT, it is compared with the original COOT algorithm and the well-known natural heuristic optimization algorithm on the recognized CEC2017 and CEC2019 benchmark suites, respectively. For the 29 CEC2017 problems, COBHCOOT performed the best in 15 (51.72%, 30-Dim), 14 (48.28%, 50-Dim) and 11 (37.93%, 100-Dim) respectively, and for the 10 CEC2019 benchmark functions, COBHCOOT performed the best in 7 of them. Furthermore, the practicability and potential of COBHCOOT are also highlighted by solving two engineering optimization problems and four truss structure optimization problems. Eventually, to examine the validity and performance of COBHCOOT for medical feature selection, eight medical datasets are used as benchmarks to compare with other superior methods in terms of average accuracy and number of features. Particularly, COBHCOOT is applied to the feature selection of cervical cancer behavior risk dataset. The findings testified that COBHCOOT achieves better accuracy with a minimal number of features compared with the comparison methods." @default.
- W4307905923 created "2022-11-06" @default.
- W4307905923 creator A5009017652 @default.
- W4307905923 creator A5018927991 @default.
- W4307905923 creator A5032240816 @default.
- W4307905923 creator A5070682362 @default.
- W4307905923 date "2022-12-01" @default.
- W4307905923 modified "2023-10-14" @default.
- W4307905923 title "Multi-strategy assisted chaotic coot-inspired optimization algorithm for medical feature selection: A cervical cancer behavior risk study" @default.
- W4307905923 cites W1102883814 @default.
- W4307905923 cites W1444952417 @default.
- W4307905923 cites W1973997930 @default.
- W4307905923 cites W1975162393 @default.
- W4307905923 cites W1985460844 @default.
- W4307905923 cites W1990966828 @default.
- W4307905923 cites W1995143515 @default.
- W4307905923 cites W1995832922 @default.
- W4307905923 cites W1999284878 @default.
- W4307905923 cites W2001979953 @default.
- W4307905923 cites W2003751475 @default.
- W4307905923 cites W2014743688 @default.
- W4307905923 cites W2031183907 @default.
- W4307905923 cites W2050927287 @default.
- W4307905923 cites W2056811412 @default.
- W4307905923 cites W2061438946 @default.
- W4307905923 cites W2068919696 @default.
- W4307905923 cites W2072955302 @default.
- W4307905923 cites W2073082177 @default.
- W4307905923 cites W2086167429 @default.
- W4307905923 cites W2088359425 @default.
- W4307905923 cites W2096166399 @default.
- W4307905923 cites W2096673585 @default.
- W4307905923 cites W2141394518 @default.
- W4307905923 cites W2147410905 @default.
- W4307905923 cites W2191258242 @default.
- W4307905923 cites W2290883490 @default.
- W4307905923 cites W2464585100 @default.
- W4307905923 cites W2508160469 @default.
- W4307905923 cites W2519501408 @default.
- W4307905923 cites W2556165343 @default.
- W4307905923 cites W2585392941 @default.
- W4307905923 cites W2612473079 @default.
- W4307905923 cites W2620511244 @default.
- W4307905923 cites W2738900493 @default.
- W4307905923 cites W2776356831 @default.
- W4307905923 cites W2789367429 @default.
- W4307905923 cites W2790662215 @default.
- W4307905923 cites W2793026107 @default.
- W4307905923 cites W2793758168 @default.
- W4307905923 cites W2807821935 @default.
- W4307905923 cites W2808223626 @default.
- W4307905923 cites W2889545660 @default.
- W4307905923 cites W2898785807 @default.
- W4307905923 cites W2902421512 @default.
- W4307905923 cites W2919979744 @default.
- W4307905923 cites W2927000295 @default.
- W4307905923 cites W2962182762 @default.
- W4307905923 cites W2980570898 @default.
- W4307905923 cites W2985845430 @default.
- W4307905923 cites W2998553334 @default.
- W4307905923 cites W3011104345 @default.
- W4307905923 cites W3014974411 @default.
- W4307905923 cites W3019808498 @default.
- W4307905923 cites W3024166030 @default.
- W4307905923 cites W3036044602 @default.
- W4307905923 cites W3080103674 @default.
- W4307905923 cites W3088041907 @default.
- W4307905923 cites W3119051141 @default.
- W4307905923 cites W3139484821 @default.
- W4307905923 cites W3159941409 @default.
- W4307905923 cites W3161924025 @default.
- W4307905923 cites W3168104563 @default.
- W4307905923 cites W3173038766 @default.
- W4307905923 cites W3185346377 @default.
- W4307905923 cites W3191633901 @default.
- W4307905923 cites W3193148855 @default.
- W4307905923 cites W3193238958 @default.
- W4307905923 cites W3206468654 @default.
- W4307905923 cites W3207365234 @default.
- W4307905923 cites W3209919935 @default.
- W4307905923 cites W3210439805 @default.
- W4307905923 cites W3211434935 @default.
- W4307905923 cites W3214729164 @default.
- W4307905923 cites W4200070715 @default.
- W4307905923 cites W4200305979 @default.
- W4307905923 cites W4200538164 @default.
- W4307905923 cites W4205855876 @default.
- W4307905923 cites W4211039922 @default.
- W4307905923 cites W4223539584 @default.
- W4307905923 cites W4229066312 @default.
- W4307905923 cites W4231410837 @default.
- W4307905923 cites W4281859813 @default.
- W4307905923 cites W4285602720 @default.
- W4307905923 cites W4286484507 @default.
- W4307905923 cites W4293118171 @default.
- W4307905923 cites W883434633 @default.
- W4307905923 doi "https://doi.org/10.1016/j.compbiomed.2022.106239" @default.
- W4307905923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36335810" @default.