Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307920929> ?p ?o ?g. }
- W4307920929 endingPage "736" @default.
- W4307920929 startingPage "721" @default.
- W4307920929 abstract "Smooth camber morphing aircraft offer increased control authority and improved aerodynamic efficiency. Smart material actuators have become a popular driving force for shape changes, capable of adhering to weight and size constraints and allowing for simplicity in mechanical design. As a step towards creating uncrewed aerial vehicles (UAVs) capable of autonomously responding to flow conditions, this work examines a multifunctional morphing airfoil’s ability to follow commands in various flows. We integrated an airfoil with a morphing trailing edge consisting of an antagonistic pair of macro fiber composites (MFCs), serving as both skin and actuator, and internal piezoelectric flex sensors to form a closed loop composite system. Closed loop feedback control is necessary to accurately follow deflection commands due to the hysteretic behavior of MFCs. Here we used a deep reinforcement learning algorithm, Proximal Policy Optimization, to control the morphing airfoil. Two neural controllers were trained in a simulation developed through time series modeling on long short-term memory recurrent neural networks. The learned controllers were then tested on the composite wing using two state inference methods in still air and in a wind tunnel at various flow speeds. We compared the performance of our neural controllers to one using traditional position-derivative feedback control methods. Our experimental results validate that the autonomous neural controllers were faster and more accurate than traditional methods. This research shows that deep learning methods can overcome common obstacles for achieving sufficient modeling and control when implementing smart composite actuators in an autonomous aerospace environment." @default.
- W4307920929 created "2022-11-06" @default.
- W4307920929 creator A5007305559 @default.
- W4307920929 creator A5015162776 @default.
- W4307920929 creator A5018177562 @default.
- W4307920929 date "2022-11-02" @default.
- W4307920929 modified "2023-09-29" @default.
- W4307920929 title "Deep reinforcement learning achieves multifunctional morphing airfoil control" @default.
- W4307920929 cites W1991681441 @default.
- W4307920929 cites W1997268702 @default.
- W4307920929 cites W2005634903 @default.
- W4307920929 cites W2007632232 @default.
- W4307920929 cites W2009976000 @default.
- W4307920929 cites W2028501442 @default.
- W4307920929 cites W2043527406 @default.
- W4307920929 cites W2064675550 @default.
- W4307920929 cites W2081170398 @default.
- W4307920929 cites W2094740719 @default.
- W4307920929 cites W2102479576 @default.
- W4307920929 cites W2115996734 @default.
- W4307920929 cites W2144891342 @default.
- W4307920929 cites W2145339207 @default.
- W4307920929 cites W2145632868 @default.
- W4307920929 cites W2162290428 @default.
- W4307920929 cites W2168256584 @default.
- W4307920929 cites W2170396314 @default.
- W4307920929 cites W2257979135 @default.
- W4307920929 cites W2342577965 @default.
- W4307920929 cites W2618209711 @default.
- W4307920929 cites W2781546099 @default.
- W4307920929 cites W2782229203 @default.
- W4307920929 cites W2897661175 @default.
- W4307920929 cites W2902907165 @default.
- W4307920929 cites W2909539383 @default.
- W4307920929 cites W2947027947 @default.
- W4307920929 cites W2962890638 @default.
- W4307920929 cites W2963428623 @default.
- W4307920929 cites W2990747716 @default.
- W4307920929 cites W3100777112 @default.
- W4307920929 cites W3106462682 @default.
- W4307920929 cites W3164005523 @default.
- W4307920929 cites W3185303610 @default.
- W4307920929 cites W4210938386 @default.
- W4307920929 cites W2894590508 @default.
- W4307920929 doi "https://doi.org/10.1177/00219983221137644" @default.
- W4307920929 hasPublicationYear "2022" @default.
- W4307920929 type Work @default.
- W4307920929 citedByCount "1" @default.
- W4307920929 countsByYear W43079209292023 @default.
- W4307920929 crossrefType "journal-article" @default.
- W4307920929 hasAuthorship W4307920929A5007305559 @default.
- W4307920929 hasAuthorship W4307920929A5015162776 @default.
- W4307920929 hasAuthorship W4307920929A5018177562 @default.
- W4307920929 hasConcept C112124176 @default.
- W4307920929 hasConcept C127413603 @default.
- W4307920929 hasConcept C133731056 @default.
- W4307920929 hasConcept C13393347 @default.
- W4307920929 hasConcept C146978453 @default.
- W4307920929 hasConcept C154945302 @default.
- W4307920929 hasConcept C172707124 @default.
- W4307920929 hasConcept C197231348 @default.
- W4307920929 hasConcept C2775924081 @default.
- W4307920929 hasConcept C28317120 @default.
- W4307920929 hasConcept C41008148 @default.
- W4307920929 hasConcept C47446073 @default.
- W4307920929 hasConcept C50637493 @default.
- W4307920929 hasConcept C66938386 @default.
- W4307920929 hasConcept C97541855 @default.
- W4307920929 hasConceptScore W4307920929C112124176 @default.
- W4307920929 hasConceptScore W4307920929C127413603 @default.
- W4307920929 hasConceptScore W4307920929C133731056 @default.
- W4307920929 hasConceptScore W4307920929C13393347 @default.
- W4307920929 hasConceptScore W4307920929C146978453 @default.
- W4307920929 hasConceptScore W4307920929C154945302 @default.
- W4307920929 hasConceptScore W4307920929C172707124 @default.
- W4307920929 hasConceptScore W4307920929C197231348 @default.
- W4307920929 hasConceptScore W4307920929C2775924081 @default.
- W4307920929 hasConceptScore W4307920929C28317120 @default.
- W4307920929 hasConceptScore W4307920929C41008148 @default.
- W4307920929 hasConceptScore W4307920929C47446073 @default.
- W4307920929 hasConceptScore W4307920929C50637493 @default.
- W4307920929 hasConceptScore W4307920929C66938386 @default.
- W4307920929 hasConceptScore W4307920929C97541855 @default.
- W4307920929 hasFunder F4320306076 @default.
- W4307920929 hasFunder F4320338279 @default.
- W4307920929 hasIssue "4" @default.
- W4307920929 hasLocation W43079209291 @default.
- W4307920929 hasOpenAccess W4307920929 @default.
- W4307920929 hasPrimaryLocation W43079209291 @default.
- W4307920929 hasRelatedWork W1599149438 @default.
- W4307920929 hasRelatedWork W2101278426 @default.
- W4307920929 hasRelatedWork W2294437047 @default.
- W4307920929 hasRelatedWork W2318248241 @default.
- W4307920929 hasRelatedWork W2322754581 @default.
- W4307920929 hasRelatedWork W2327087733 @default.
- W4307920929 hasRelatedWork W2327516015 @default.
- W4307920929 hasRelatedWork W2342206732 @default.
- W4307920929 hasRelatedWork W2557714052 @default.