Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307931310> ?p ?o ?g. }
- W4307931310 endingPage "19" @default.
- W4307931310 startingPage "1" @default.
- W4307931310 abstract "Neural network (i.e. deep learning, NN)-based data analysis techniques have been listed as a pivotal opportunity to protect the integrity and safety of the global food supply chain and forecast $11.2 billion in agriculture markets. As a general-purpose data analytic tool, NN has been applied in several areas of food science, such as food recognition, food supply chain security and omics analysis, and so on. Therefore, given the rapid emergence of NN applications in food safety, this review aims to provide a comprehensive overview of the NN application in food analysis for the first time, focusing on domain-specific applications in food analysis by introducing fundamental methodology, reviewing recent and notable progress, and discussing challenges and potential pitfalls. NN demonstrated that it has a bright future through effective collaboration between food specialist and the broader community in the food field, for example, superiority in food recognition, sensory evaluation, pattern recognition of spectroscopy and chromatography. However, major challenges impeded NN extension including void in the food scientist-friendly interface software package, incomprehensible model behavior, multi-source heterogeneous data, and so on. The breakthrough from other fields proved NN has the potential to offer a revolution in the immediate future." @default.
- W4307931310 created "2022-11-06" @default.
- W4307931310 creator A5024085159 @default.
- W4307931310 creator A5057489654 @default.
- W4307931310 creator A5060736059 @default.
- W4307931310 creator A5065243448 @default.
- W4307931310 creator A5066184901 @default.
- W4307931310 creator A5066508040 @default.
- W4307931310 creator A5071833362 @default.
- W4307931310 creator A5086942818 @default.
- W4307931310 creator A5086998524 @default.
- W4307931310 date "2022-11-02" @default.
- W4307931310 modified "2023-10-18" @default.
- W4307931310 title "Neural network in food analytics" @default.
- W4307931310 cites W1030521295 @default.
- W4307931310 cites W1187661429 @default.
- W4307931310 cites W12634471 @default.
- W4307931310 cites W1881210807 @default.
- W4307931310 cites W1964856489 @default.
- W4307931310 cites W1974523379 @default.
- W4307931310 cites W1993433995 @default.
- W4307931310 cites W1995863240 @default.
- W4307931310 cites W1997178704 @default.
- W4307931310 cites W1997241364 @default.
- W4307931310 cites W2010459415 @default.
- W4307931310 cites W2022110298 @default.
- W4307931310 cites W2024277145 @default.
- W4307931310 cites W2039973933 @default.
- W4307931310 cites W2052692769 @default.
- W4307931310 cites W2064675550 @default.
- W4307931310 cites W2069262297 @default.
- W4307931310 cites W2073516505 @default.
- W4307931310 cites W2097117768 @default.
- W4307931310 cites W2112796928 @default.
- W4307931310 cites W2159901710 @default.
- W4307931310 cites W2171672968 @default.
- W4307931310 cites W2194775991 @default.
- W4307931310 cites W2308739183 @default.
- W4307931310 cites W2316771457 @default.
- W4307931310 cites W2345330295 @default.
- W4307931310 cites W2528491735 @default.
- W4307931310 cites W2560853621 @default.
- W4307931310 cites W2564339002 @default.
- W4307931310 cites W2565684601 @default.
- W4307931310 cites W2768732801 @default.
- W4307931310 cites W2774977638 @default.
- W4307931310 cites W2779516725 @default.
- W4307931310 cites W2789405329 @default.
- W4307931310 cites W2792817593 @default.
- W4307931310 cites W2794104610 @default.
- W4307931310 cites W2811389157 @default.
- W4307931310 cites W2883273084 @default.
- W4307931310 cites W2887409581 @default.
- W4307931310 cites W2889947874 @default.
- W4307931310 cites W2891635869 @default.
- W4307931310 cites W2893748071 @default.
- W4307931310 cites W2902733146 @default.
- W4307931310 cites W2903298154 @default.
- W4307931310 cites W2904025874 @default.
- W4307931310 cites W2935951707 @default.
- W4307931310 cites W2941368100 @default.
- W4307931310 cites W2948012532 @default.
- W4307931310 cites W2948494138 @default.
- W4307931310 cites W2950944546 @default.
- W4307931310 cites W2951230751 @default.
- W4307931310 cites W2954828487 @default.
- W4307931310 cites W2958941798 @default.
- W4307931310 cites W2962078089 @default.
- W4307931310 cites W2963697592 @default.
- W4307931310 cites W2966316879 @default.
- W4307931310 cites W2968460295 @default.
- W4307931310 cites W2970325348 @default.
- W4307931310 cites W2971666515 @default.
- W4307931310 cites W2974140502 @default.
- W4307931310 cites W2990549933 @default.
- W4307931310 cites W2994716258 @default.
- W4307931310 cites W2995128725 @default.
- W4307931310 cites W2995470054 @default.
- W4307931310 cites W2996634402 @default.
- W4307931310 cites W2998807167 @default.
- W4307931310 cites W2999431220 @default.
- W4307931310 cites W3007918442 @default.
- W4307931310 cites W3008279115 @default.
- W4307931310 cites W3010558195 @default.
- W4307931310 cites W3010812135 @default.
- W4307931310 cites W3011531216 @default.
- W4307931310 cites W3015778985 @default.
- W4307931310 cites W3028278747 @default.
- W4307931310 cites W3033958797 @default.
- W4307931310 cites W3034010068 @default.
- W4307931310 cites W3037085950 @default.
- W4307931310 cites W3039550818 @default.
- W4307931310 cites W3046202294 @default.
- W4307931310 cites W3087066227 @default.
- W4307931310 cites W3088405015 @default.
- W4307931310 cites W3095214037 @default.
- W4307931310 cites W3108401615 @default.
- W4307931310 cites W3113817084 @default.