Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307933666> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4307933666 abstract "Federated learning makes it possible to train a machine learning model on decentralized data. Bayesian networks are probabilistic graphical models that have been widely used in artificial intelligence applications. Their popularity stems from the fact they can be built by combining existing expert knowledge with data and are highly interpretable, which makes them useful for decision support, e.g. in healthcare. While some research has been published on the federated learning of Bayesian networks, publications on Bayesian networks in a vertically partitioned or heterogeneous data setting (where different variables are located in different datasets) are limited, and suffer from important omissions, such as the handling of missing data. In this article, we propose a novel method called VertiBayes to train Bayesian networks (structure and parameters) on vertically partitioned data, which can handle missing values as well as an arbitrary number of parties. For structure learning we adapted the widely used K2 algorithm with a privacy-preserving scalar product protocol. For parameter learning, we use a two-step approach: first, we learn an intermediate model using maximum likelihood by treating missing values as a special value and then we train a model on synthetic data generated by the intermediate model using the EM algorithm. The privacy guarantees of our approach are equivalent to the ones provided by the privacy preserving scalar product protocol used. We experimentally show our approach produces models comparable to those learnt using traditional algorithms and we estimate the increase in complexity in terms of samples, network size, and complexity. Finally, we propose two alternative approaches to estimate the performance of the model using vertically partitioned data and we show in experiments that they lead to reasonably accurate estimates." @default.
- W4307933666 created "2022-11-06" @default.
- W4307933666 creator A5013513157 @default.
- W4307933666 creator A5058533373 @default.
- W4307933666 creator A5072021658 @default.
- W4307933666 creator A5075346171 @default.
- W4307933666 date "2022-10-31" @default.
- W4307933666 modified "2023-09-27" @default.
- W4307933666 title "VertiBayes: Learning Bayesian network parameters from vertically partitioned data with missing values" @default.
- W4307933666 doi "https://doi.org/10.48550/arxiv.2210.17228" @default.
- W4307933666 hasPublicationYear "2022" @default.
- W4307933666 type Work @default.
- W4307933666 citedByCount "0" @default.
- W4307933666 crossrefType "posted-content" @default.
- W4307933666 hasAuthorship W4307933666A5013513157 @default.
- W4307933666 hasAuthorship W4307933666A5058533373 @default.
- W4307933666 hasAuthorship W4307933666A5072021658 @default.
- W4307933666 hasAuthorship W4307933666A5075346171 @default.
- W4307933666 hasBestOaLocation W43079336661 @default.
- W4307933666 hasConcept C107673813 @default.
- W4307933666 hasConcept C119857082 @default.
- W4307933666 hasConcept C124101348 @default.
- W4307933666 hasConcept C142724271 @default.
- W4307933666 hasConcept C154945302 @default.
- W4307933666 hasConcept C155846161 @default.
- W4307933666 hasConcept C204787440 @default.
- W4307933666 hasConcept C2524010 @default.
- W4307933666 hasConcept C2780385302 @default.
- W4307933666 hasConcept C33724603 @default.
- W4307933666 hasConcept C33923547 @default.
- W4307933666 hasConcept C41008148 @default.
- W4307933666 hasConcept C49937458 @default.
- W4307933666 hasConcept C71924100 @default.
- W4307933666 hasConcept C90673727 @default.
- W4307933666 hasConcept C9357733 @default.
- W4307933666 hasConceptScore W4307933666C107673813 @default.
- W4307933666 hasConceptScore W4307933666C119857082 @default.
- W4307933666 hasConceptScore W4307933666C124101348 @default.
- W4307933666 hasConceptScore W4307933666C142724271 @default.
- W4307933666 hasConceptScore W4307933666C154945302 @default.
- W4307933666 hasConceptScore W4307933666C155846161 @default.
- W4307933666 hasConceptScore W4307933666C204787440 @default.
- W4307933666 hasConceptScore W4307933666C2524010 @default.
- W4307933666 hasConceptScore W4307933666C2780385302 @default.
- W4307933666 hasConceptScore W4307933666C33724603 @default.
- W4307933666 hasConceptScore W4307933666C33923547 @default.
- W4307933666 hasConceptScore W4307933666C41008148 @default.
- W4307933666 hasConceptScore W4307933666C49937458 @default.
- W4307933666 hasConceptScore W4307933666C71924100 @default.
- W4307933666 hasConceptScore W4307933666C90673727 @default.
- W4307933666 hasConceptScore W4307933666C9357733 @default.
- W4307933666 hasLocation W43079336661 @default.
- W4307933666 hasLocation W43079336662 @default.
- W4307933666 hasOpenAccess W4307933666 @default.
- W4307933666 hasPrimaryLocation W43079336661 @default.
- W4307933666 hasRelatedWork W1715419791 @default.
- W4307933666 hasRelatedWork W2043642599 @default.
- W4307933666 hasRelatedWork W2128214664 @default.
- W4307933666 hasRelatedWork W2158940596 @default.
- W4307933666 hasRelatedWork W2189510368 @default.
- W4307933666 hasRelatedWork W2210219486 @default.
- W4307933666 hasRelatedWork W2561451072 @default.
- W4307933666 hasRelatedWork W2565618151 @default.
- W4307933666 hasRelatedWork W2963058055 @default.
- W4307933666 hasRelatedWork W2965964939 @default.
- W4307933666 isParatext "false" @default.
- W4307933666 isRetracted "false" @default.
- W4307933666 workType "article" @default.