Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307939007> ?p ?o ?g. }
- W4307939007 endingPage "8336" @default.
- W4307939007 startingPage "8336" @default.
- W4307939007 abstract "Axially loaded beam-like structures represent a challenging case study for unsupervised learning vibration-based damage detection. Under real environmental and operational conditions, changes in axial load cause changes in the characteristics of the dynamic response that are significantly greater than those due to damage at an early stage. In previous works, the authors proposed the adoption of a multivariate damage feature composed of eigenfrequencies of multiple vibration modes. Successful results were obtained by framing the problem of damage detection as that of unsupervised outlier detection, adopting the well-known Mahalanobis squared distance (MSD) to define an effective damage index. Starting from these promising results, a novel approach based on unsupervised learning data clustering is proposed in this work, which increases the sensitivity to damage and significantly reduces the uncertainty associated with the results, allowing for earlier damage detection. The novel approach, which is based on Gaussian mixture model, is compared with the benchmark one based on the MSD, under the effects of an uncontrolled environment and, most importantly, in the presence of real damage due to corrosion." @default.
- W4307939007 created "2022-11-06" @default.
- W4307939007 creator A5010251560 @default.
- W4307939007 creator A5037087115 @default.
- W4307939007 creator A5039054289 @default.
- W4307939007 creator A5049637533 @default.
- W4307939007 date "2022-10-30" @default.
- W4307939007 modified "2023-10-14" @default.
- W4307939007 title "A Damage Detection Approach for Axially Loaded Beam-like Structures Based on Gaussian Mixture Model" @default.
- W4307939007 cites W1978235120 @default.
- W4307939007 cites W1984522501 @default.
- W4307939007 cites W1990334270 @default.
- W4307939007 cites W1992606739 @default.
- W4307939007 cites W1998742785 @default.
- W4307939007 cites W2010300042 @default.
- W4307939007 cites W2011430131 @default.
- W4307939007 cites W2017508396 @default.
- W4307939007 cites W2024991751 @default.
- W4307939007 cites W2027456229 @default.
- W4307939007 cites W2027566931 @default.
- W4307939007 cites W2031460510 @default.
- W4307939007 cites W2035652711 @default.
- W4307939007 cites W2039991882 @default.
- W4307939007 cites W2041206809 @default.
- W4307939007 cites W2041823554 @default.
- W4307939007 cites W2064387854 @default.
- W4307939007 cites W2069883713 @default.
- W4307939007 cites W2080216592 @default.
- W4307939007 cites W2092944036 @default.
- W4307939007 cites W2093932769 @default.
- W4307939007 cites W2126100478 @default.
- W4307939007 cites W2130175225 @default.
- W4307939007 cites W2132549764 @default.
- W4307939007 cites W2134199473 @default.
- W4307939007 cites W2147926935 @default.
- W4307939007 cites W2150190641 @default.
- W4307939007 cites W2328363693 @default.
- W4307939007 cites W2542785945 @default.
- W4307939007 cites W2564133672 @default.
- W4307939007 cites W2594647952 @default.
- W4307939007 cites W2735996854 @default.
- W4307939007 cites W2748711806 @default.
- W4307939007 cites W2767284930 @default.
- W4307939007 cites W2768315218 @default.
- W4307939007 cites W2778199868 @default.
- W4307939007 cites W2791276491 @default.
- W4307939007 cites W2792411901 @default.
- W4307939007 cites W2794289247 @default.
- W4307939007 cites W2810189742 @default.
- W4307939007 cites W2908625589 @default.
- W4307939007 cites W2912707851 @default.
- W4307939007 cites W2941147690 @default.
- W4307939007 cites W2964551149 @default.
- W4307939007 cites W2995353658 @default.
- W4307939007 cites W3004900496 @default.
- W4307939007 cites W3088634102 @default.
- W4307939007 cites W3113270599 @default.
- W4307939007 cites W3208341470 @default.
- W4307939007 cites W3211323433 @default.
- W4307939007 cites W4211010714 @default.
- W4307939007 cites W4220832193 @default.
- W4307939007 cites W4220992777 @default.
- W4307939007 cites W4235292672 @default.
- W4307939007 cites W4244748642 @default.
- W4307939007 cites W4282933567 @default.
- W4307939007 doi "https://doi.org/10.3390/s22218336" @default.
- W4307939007 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36366033" @default.
- W4307939007 hasPublicationYear "2022" @default.
- W4307939007 type Work @default.
- W4307939007 citedByCount "6" @default.
- W4307939007 countsByYear W43079390072023 @default.
- W4307939007 crossrefType "journal-article" @default.
- W4307939007 hasAuthorship W4307939007A5010251560 @default.
- W4307939007 hasAuthorship W4307939007A5037087115 @default.
- W4307939007 hasAuthorship W4307939007A5039054289 @default.
- W4307939007 hasAuthorship W4307939007A5049637533 @default.
- W4307939007 hasBestOaLocation W43079390071 @default.
- W4307939007 hasConcept C121332964 @default.
- W4307939007 hasConcept C127413603 @default.
- W4307939007 hasConcept C13280743 @default.
- W4307939007 hasConcept C153180895 @default.
- W4307939007 hasConcept C154945302 @default.
- W4307939007 hasConcept C163716315 @default.
- W4307939007 hasConcept C185798385 @default.
- W4307939007 hasConcept C1921717 @default.
- W4307939007 hasConcept C205649164 @default.
- W4307939007 hasConcept C35377427 @default.
- W4307939007 hasConcept C41008148 @default.
- W4307939007 hasConcept C61224824 @default.
- W4307939007 hasConcept C62520636 @default.
- W4307939007 hasConcept C66938386 @default.
- W4307939007 hasConcept C73555534 @default.
- W4307939007 hasConcept C739882 @default.
- W4307939007 hasConcept C79337645 @default.
- W4307939007 hasConcept C8038995 @default.
- W4307939007 hasConceptScore W4307939007C121332964 @default.
- W4307939007 hasConceptScore W4307939007C127413603 @default.
- W4307939007 hasConceptScore W4307939007C13280743 @default.