Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307940504> ?p ?o ?g. }
- W4307940504 endingPage "3506" @default.
- W4307940504 startingPage "3506" @default.
- W4307940504 abstract "The tremendous rise of electrical energy demand worldwide has led to many problems related to efficient use of electrical energy, consequently posing difficult challenges to electricity consumers of all levels—from households to large companies’ facilities. Most of these challenges could be overcome by the accurate prediction of electricity demand. Additionally, balance responsibility includes the penalty-based financial mechanism causing extra expense for badly estimated consumption, above the allowed imbalance limits. In this paper, a method for electricity consumption prediction based on artificial neural networks is proposed. The electricity consumption dataset is obtained from a cold storage facility, which generates data in hourly intervals. The data obtained are measured for a period of over 2 years and then separated to four seasons, so different models are developed for each season. Five different network structures (ordinary RNN, LSTM, GRU, bidirectional LSTM, bidirectional GRU) for five different values of horizon, i.e., input data (one day, two days, four days, one week, two weeks) are examined. Performance indices, such as mean absolute percentage error (MAPE), root mean square error (RMSE), mean absolute error (MAE) and mean square error (MSE), are used in order to obtain qualitative and quantitative comparisons among the obtained models. The results show that the modifications of recurrent neural networks perform much better than ordinary recurrent neural networks. GRU and LSTMB structures with horizons of 168h and 336h are found to have the best performances." @default.
- W4307940504 created "2022-11-06" @default.
- W4307940504 creator A5011051493 @default.
- W4307940504 creator A5032661288 @default.
- W4307940504 creator A5082137961 @default.
- W4307940504 date "2022-10-28" @default.
- W4307940504 modified "2023-10-04" @default.
- W4307940504 title "Electricity Consumption Prediction in an Electronic System Using Artificial Neural Networks" @default.
- W4307940504 cites W1547333707 @default.
- W4307940504 cites W1979683999 @default.
- W4307940504 cites W1990785420 @default.
- W4307940504 cites W1991001067 @default.
- W4307940504 cites W1998230236 @default.
- W4307940504 cites W2006846066 @default.
- W4307940504 cites W2048608810 @default.
- W4307940504 cites W2059410869 @default.
- W4307940504 cites W2064675550 @default.
- W4307940504 cites W2087832946 @default.
- W4307940504 cites W2131774270 @default.
- W4307940504 cites W2166469639 @default.
- W4307940504 cites W2270330859 @default.
- W4307940504 cites W2551152058 @default.
- W4307940504 cites W2560599441 @default.
- W4307940504 cites W2590925279 @default.
- W4307940504 cites W2735778951 @default.
- W4307940504 cites W2736391747 @default.
- W4307940504 cites W2775055969 @default.
- W4307940504 cites W2776741657 @default.
- W4307940504 cites W2823906716 @default.
- W4307940504 cites W2901994134 @default.
- W4307940504 cites W2902154084 @default.
- W4307940504 cites W2911964244 @default.
- W4307940504 cites W2953521532 @default.
- W4307940504 cites W2963991316 @default.
- W4307940504 cites W2987830437 @default.
- W4307940504 cites W3006374723 @default.
- W4307940504 cites W3006781240 @default.
- W4307940504 cites W3024761859 @default.
- W4307940504 cites W3098996042 @default.
- W4307940504 cites W3122860865 @default.
- W4307940504 cites W3126228994 @default.
- W4307940504 cites W3152652054 @default.
- W4307940504 cites W3179334695 @default.
- W4307940504 cites W3198798833 @default.
- W4307940504 cites W3209033656 @default.
- W4307940504 cites W4214853018 @default.
- W4307940504 cites W4225493947 @default.
- W4307940504 cites W4281989976 @default.
- W4307940504 cites W4289132177 @default.
- W4307940504 doi "https://doi.org/10.3390/electronics11213506" @default.
- W4307940504 hasPublicationYear "2022" @default.
- W4307940504 type Work @default.
- W4307940504 citedByCount "1" @default.
- W4307940504 countsByYear W43079405042022 @default.
- W4307940504 crossrefType "journal-article" @default.
- W4307940504 hasAuthorship W4307940504A5011051493 @default.
- W4307940504 hasAuthorship W4307940504A5032661288 @default.
- W4307940504 hasAuthorship W4307940504A5082137961 @default.
- W4307940504 hasBestOaLocation W43079405041 @default.
- W4307940504 hasConcept C105795698 @default.
- W4307940504 hasConcept C11413529 @default.
- W4307940504 hasConcept C119599485 @default.
- W4307940504 hasConcept C122383733 @default.
- W4307940504 hasConcept C127413603 @default.
- W4307940504 hasConcept C139945424 @default.
- W4307940504 hasConcept C144024400 @default.
- W4307940504 hasConcept C147168706 @default.
- W4307940504 hasConcept C149782125 @default.
- W4307940504 hasConcept C150217764 @default.
- W4307940504 hasConcept C154945302 @default.
- W4307940504 hasConcept C206658404 @default.
- W4307940504 hasConcept C2780165032 @default.
- W4307940504 hasConcept C30772137 @default.
- W4307940504 hasConcept C33923547 @default.
- W4307940504 hasConcept C36289849 @default.
- W4307940504 hasConcept C41008148 @default.
- W4307940504 hasConcept C50644808 @default.
- W4307940504 hasConceptScore W4307940504C105795698 @default.
- W4307940504 hasConceptScore W4307940504C11413529 @default.
- W4307940504 hasConceptScore W4307940504C119599485 @default.
- W4307940504 hasConceptScore W4307940504C122383733 @default.
- W4307940504 hasConceptScore W4307940504C127413603 @default.
- W4307940504 hasConceptScore W4307940504C139945424 @default.
- W4307940504 hasConceptScore W4307940504C144024400 @default.
- W4307940504 hasConceptScore W4307940504C147168706 @default.
- W4307940504 hasConceptScore W4307940504C149782125 @default.
- W4307940504 hasConceptScore W4307940504C150217764 @default.
- W4307940504 hasConceptScore W4307940504C154945302 @default.
- W4307940504 hasConceptScore W4307940504C206658404 @default.
- W4307940504 hasConceptScore W4307940504C2780165032 @default.
- W4307940504 hasConceptScore W4307940504C30772137 @default.
- W4307940504 hasConceptScore W4307940504C33923547 @default.
- W4307940504 hasConceptScore W4307940504C36289849 @default.
- W4307940504 hasConceptScore W4307940504C41008148 @default.
- W4307940504 hasConceptScore W4307940504C50644808 @default.
- W4307940504 hasIssue "21" @default.
- W4307940504 hasLocation W43079405041 @default.
- W4307940504 hasOpenAccess W4307940504 @default.