Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307942321> ?p ?o ?g. }
- W4307942321 endingPage "1594" @default.
- W4307942321 startingPage "1594" @default.
- W4307942321 abstract "The process of aging and metabolism are intricately linked, thus rendering the identification of reliable biomarkers related to metabolism crucial for delaying the aging process. However, research of reliable markers that reflect aging profiles based on machine learning is scarce.Serum samples were obtained from aged mice (18-month-old) and young mice (3-month-old). LC-MS was used to perform a comprehensive analysis of the serum metabolome and machine learning was used to screen potential aging-related biomarkers.In total, aging mice were characterized by 54 different metabolites when compared to control mice with criteria: VIP ≥ 1, q-value < 0.05, and Fold-Change ≥ 1.2 or ≤0.83. These metabolites were mostly involved in fatty acid biosynthesis, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, and the citrate cycle (TCA cycle). We merged the comprehensive analysis and four algorithms (LR, GNB, SVM, and RF) to screen aging-related biomarkers, leading to the recognition of oleic acid. In addition, five metabolites were identified as novel aging-related indicators, including oleic acid, citric acid, D-glutamine, trypophol, and L-methionine.Changes in the metabolism of fatty acids and conjugates, organic acids, and amino acids were identified as metabolic dysregulation related to aging. This study revealed the metabolic profile of aging and provided insights into novel potential therapeutic targets for delaying the effects of aging." @default.
- W4307942321 created "2022-11-06" @default.
- W4307942321 creator A5012775407 @default.
- W4307942321 creator A5019842995 @default.
- W4307942321 creator A5050613338 @default.
- W4307942321 creator A5058784085 @default.
- W4307942321 creator A5061231700 @default.
- W4307942321 creator A5079300203 @default.
- W4307942321 creator A5089776239 @default.
- W4307942321 date "2022-10-29" @default.
- W4307942321 modified "2023-10-18" @default.
- W4307942321 title "Serum Metabolomic Profiling in Aging Mice Using Liquid Chromatography—Mass Spectrometry" @default.
- W4307942321 cites W2023535481 @default.
- W4307942321 cites W2030848086 @default.
- W4307942321 cites W2033461907 @default.
- W4307942321 cites W2042568900 @default.
- W4307942321 cites W2051691116 @default.
- W4307942321 cites W2076272449 @default.
- W4307942321 cites W2095864675 @default.
- W4307942321 cites W2153583490 @default.
- W4307942321 cites W2159173778 @default.
- W4307942321 cites W2289681228 @default.
- W4307942321 cites W2292050577 @default.
- W4307942321 cites W2318079341 @default.
- W4307942321 cites W2322580831 @default.
- W4307942321 cites W2564489970 @default.
- W4307942321 cites W2593344067 @default.
- W4307942321 cites W2606757801 @default.
- W4307942321 cites W2749646273 @default.
- W4307942321 cites W2767198113 @default.
- W4307942321 cites W2789621916 @default.
- W4307942321 cites W2790799311 @default.
- W4307942321 cites W2792937385 @default.
- W4307942321 cites W2919822707 @default.
- W4307942321 cites W2957854144 @default.
- W4307942321 cites W2959728234 @default.
- W4307942321 cites W2979432897 @default.
- W4307942321 cites W2982414522 @default.
- W4307942321 cites W2990944800 @default.
- W4307942321 cites W2991098764 @default.
- W4307942321 cites W3014413945 @default.
- W4307942321 cites W3024816227 @default.
- W4307942321 cites W3025131717 @default.
- W4307942321 cites W3047498851 @default.
- W4307942321 cites W3049538451 @default.
- W4307942321 cites W3082542755 @default.
- W4307942321 cites W3085562695 @default.
- W4307942321 cites W3087940289 @default.
- W4307942321 cites W3090224263 @default.
- W4307942321 cites W3119479703 @default.
- W4307942321 cites W3119985674 @default.
- W4307942321 cites W3121475299 @default.
- W4307942321 cites W3128603278 @default.
- W4307942321 cites W3158627234 @default.
- W4307942321 cites W3159995035 @default.
- W4307942321 cites W3160256367 @default.
- W4307942321 cites W3160268512 @default.
- W4307942321 cites W3164155938 @default.
- W4307942321 cites W3181660183 @default.
- W4307942321 cites W3185464786 @default.
- W4307942321 cites W3193280260 @default.
- W4307942321 cites W3193710419 @default.
- W4307942321 cites W3208157462 @default.
- W4307942321 cites W3210161368 @default.
- W4307942321 cites W3210265850 @default.
- W4307942321 cites W4295123530 @default.
- W4307942321 doi "https://doi.org/10.3390/biom12111594" @default.
- W4307942321 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36358944" @default.
- W4307942321 hasPublicationYear "2022" @default.
- W4307942321 type Work @default.
- W4307942321 citedByCount "3" @default.
- W4307942321 countsByYear W43079423212023 @default.
- W4307942321 crossrefType "journal-article" @default.
- W4307942321 hasAuthorship W4307942321A5012775407 @default.
- W4307942321 hasAuthorship W4307942321A5019842995 @default.
- W4307942321 hasAuthorship W4307942321A5050613338 @default.
- W4307942321 hasAuthorship W4307942321A5058784085 @default.
- W4307942321 hasAuthorship W4307942321A5061231700 @default.
- W4307942321 hasAuthorship W4307942321A5079300203 @default.
- W4307942321 hasAuthorship W4307942321A5089776239 @default.
- W4307942321 hasBestOaLocation W43079423211 @default.
- W4307942321 hasConcept C135870905 @default.
- W4307942321 hasConcept C165135838 @default.
- W4307942321 hasConcept C185592680 @default.
- W4307942321 hasConcept C192989942 @default.
- W4307942321 hasConcept C21565614 @default.
- W4307942321 hasConcept C2776991927 @default.
- W4307942321 hasConcept C2779349466 @default.
- W4307942321 hasConcept C2780912031 @default.
- W4307942321 hasConcept C2781403372 @default.
- W4307942321 hasConcept C4733338 @default.
- W4307942321 hasConcept C515207424 @default.
- W4307942321 hasConcept C55493867 @default.
- W4307942321 hasConcept C60644358 @default.
- W4307942321 hasConcept C62231903 @default.
- W4307942321 hasConcept C86803240 @default.
- W4307942321 hasConceptScore W4307942321C135870905 @default.
- W4307942321 hasConceptScore W4307942321C165135838 @default.