Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307942371> ?p ?o ?g. }
- W4307942371 endingPage "5334" @default.
- W4307942371 startingPage "5334" @default.
- W4307942371 abstract "Breast cancer is among the most common and fatal diseases for women, and no permanent treatment has been discovered. Thus, early detection is a crucial step to control and cure breast cancer that can save the lives of millions of women. For example, in 2020, more than 65% of breast cancer patients were diagnosed in an early stage of cancer, from which all survived. Although early detection is the most effective approach for cancer treatment, breast cancer screening conducted by radiologists is very expensive and time-consuming. More importantly, conventional methods of analyzing breast cancer images suffer from high false-detection rates. Different breast cancer imaging modalities are used to extract and analyze the key features affecting the diagnosis and treatment of breast cancer. These imaging modalities can be divided into subgroups such as mammograms, ultrasound, magnetic resonance imaging, histopathological images, or any combination of them. Radiologists or pathologists analyze images produced by these methods manually, which leads to an increase in the risk of wrong decisions for cancer detection. Thus, the utilization of new automatic methods to analyze all kinds of breast screening images to assist radiologists to interpret images is required. Recently, artificial intelligence (AI) has been widely utilized to automatically improve the early detection and treatment of different types of cancer, specifically breast cancer, thereby enhancing the survival chance of patients. Advances in AI algorithms, such as deep learning, and the availability of datasets obtained from various imaging modalities have opened an opportunity to surpass the limitations of current breast cancer analysis methods. In this article, we first review breast cancer imaging modalities, and their strengths and limitations. Then, we explore and summarize the most recent studies that employed AI in breast cancer detection using various breast imaging modalities. In addition, we report available datasets on the breast-cancer imaging modalities which are important in developing AI-based algorithms and training deep learning models. In conclusion, this review paper tries to provide a comprehensive resource to help researchers working in breast cancer imaging analysis." @default.
- W4307942371 created "2022-11-06" @default.
- W4307942371 creator A5010254642 @default.
- W4307942371 creator A5051382392 @default.
- W4307942371 creator A5014807369 @default.
- W4307942371 date "2022-10-29" @default.
- W4307942371 modified "2023-10-14" @default.
- W4307942371 title "The Role of Deep Learning in Advancing Breast Cancer Detection Using Different Imaging Modalities: A Systematic Review" @default.
- W4307942371 cites W1534216133 @default.
- W4307942371 cites W1898818310 @default.
- W4307942371 cites W1961632191 @default.
- W4307942371 cites W1980527762 @default.
- W4307942371 cites W1980960118 @default.
- W4307942371 cites W1983091263 @default.
- W4307942371 cites W1987036565 @default.
- W4307942371 cites W1988819287 @default.
- W4307942371 cites W1994693701 @default.
- W4307942371 cites W1998646002 @default.
- W4307942371 cites W2003237182 @default.
- W4307942371 cites W2004395458 @default.
- W4307942371 cites W2011585383 @default.
- W4307942371 cites W2028672930 @default.
- W4307942371 cites W2030439340 @default.
- W4307942371 cites W2032751303 @default.
- W4307942371 cites W2033233060 @default.
- W4307942371 cites W2034181352 @default.
- W4307942371 cites W2036374319 @default.
- W4307942371 cites W2048477847 @default.
- W4307942371 cites W2052186216 @default.
- W4307942371 cites W2053877457 @default.
- W4307942371 cites W2054010632 @default.
- W4307942371 cites W2067032929 @default.
- W4307942371 cites W2080051246 @default.
- W4307942371 cites W2081073831 @default.
- W4307942371 cites W2086506481 @default.
- W4307942371 cites W2097117768 @default.
- W4307942371 cites W2105081948 @default.
- W4307942371 cites W2106039119 @default.
- W4307942371 cites W2109597745 @default.
- W4307942371 cites W2110262969 @default.
- W4307942371 cites W2123318149 @default.
- W4307942371 cites W2124653673 @default.
- W4307942371 cites W2135118182 @default.
- W4307942371 cites W2137082888 @default.
- W4307942371 cites W2141798739 @default.
- W4307942371 cites W2144827794 @default.
- W4307942371 cites W2151744107 @default.
- W4307942371 cites W2156196235 @default.
- W4307942371 cites W2157687887 @default.
- W4307942371 cites W2165178384 @default.
- W4307942371 cites W2175453358 @default.
- W4307942371 cites W2194775991 @default.
- W4307942371 cites W2282821441 @default.
- W4307942371 cites W2288062769 @default.
- W4307942371 cites W2295256730 @default.
- W4307942371 cites W2339885376 @default.
- W4307942371 cites W2345358625 @default.
- W4307942371 cites W2405572318 @default.
- W4307942371 cites W2492863677 @default.
- W4307942371 cites W2493683088 @default.
- W4307942371 cites W2510224130 @default.
- W4307942371 cites W2525984666 @default.
- W4307942371 cites W2530774357 @default.
- W4307942371 cites W2538556778 @default.
- W4307942371 cites W2544610040 @default.
- W4307942371 cites W2548676882 @default.
- W4307942371 cites W2549267210 @default.
- W4307942371 cites W2575040258 @default.
- W4307942371 cites W2594727603 @default.
- W4307942371 cites W2604454724 @default.
- W4307942371 cites W2604957907 @default.
- W4307942371 cites W2607075141 @default.
- W4307942371 cites W2609584387 @default.
- W4307942371 cites W2612478849 @default.
- W4307942371 cites W2613181504 @default.
- W4307942371 cites W2613776824 @default.
- W4307942371 cites W2618530766 @default.
- W4307942371 cites W2620578070 @default.
- W4307942371 cites W2644595080 @default.
- W4307942371 cites W2658383164 @default.
- W4307942371 cites W2693096534 @default.
- W4307942371 cites W2725008604 @default.
- W4307942371 cites W2725818073 @default.
- W4307942371 cites W2740028789 @default.
- W4307942371 cites W2743635406 @default.
- W4307942371 cites W2744692634 @default.
- W4307942371 cites W2752498449 @default.
- W4307942371 cites W2753588101 @default.
- W4307942371 cites W2761969486 @default.
- W4307942371 cites W2771248105 @default.
- W4307942371 cites W2772603135 @default.
- W4307942371 cites W2773642388 @default.
- W4307942371 cites W2785343799 @default.
- W4307942371 cites W2787183641 @default.
- W4307942371 cites W2789877281 @default.
- W4307942371 cites W2792983091 @default.
- W4307942371 cites W2793636613 @default.
- W4307942371 cites W2796345789 @default.