Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307965857> ?p ?o ?g. }
- W4307965857 endingPage "13" @default.
- W4307965857 startingPage "1" @default.
- W4307965857 abstract "Drones are revolutionising earth system observations, and are increasingly used for high resolution monitoring of water quality. The objective of this research was to test whether drone-based multispectral imagery could predict important water quality parameters in an ICOLL (intermittently closed and opened lake or lagoon). Three water quality sampling campaigns were undertaken, measuring temperature, salinity, pH, dissolved oxygen (DO), chlorophyll (CHL), turbidity, total suspended sediments (TSS), coloured dissolved organic matter (CDOM), green algae, crytophyta, diatoms, bluegreen algae and total algal concentrations. DistilM statistical analyses were conducted to reveal the bands accounting for the most variation across all water quality data, then linear correlations between specific band/band ratios and individual water quality parameters were performed. DistilM analyses revealed the NIR band accounted for most variation in March, the Green band in April and the RE band in May, and showed that the most important contributors varied significantly among campaigns and variables. Significant linear correlations with R2 > 0.4 were obtained for eleven of the water quality parameters tested, with the strongest correlation obtained for CHL and the green band (R2 = 0.72). The relative importance of predictor bands and observed water quality parameters varied temporally. We conclude that drones with a multispectral sensor can produce useful 'snapshot' prediction maps for a range of water quality parameters, such as chlorophyll, bluegreen algae and dissolved oxygen. However, a single model was insufficient to reproduce the temporal variation of water parameters in dynamic estuarine systems." @default.
- W4307965857 created "2022-11-06" @default.
- W4307965857 creator A5003975174 @default.
- W4307965857 creator A5025616161 @default.
- W4307965857 creator A5063133546 @default.
- W4307965857 creator A5084735110 @default.
- W4307965857 date "2022-11-22" @default.
- W4307965857 modified "2023-09-24" @default.
- W4307965857 title "Using multispectral drones to predict water quality in a subtropical estuary" @default.
- W4307965857 cites W146248464 @default.
- W4307965857 cites W1916376402 @default.
- W4307965857 cites W1990139999 @default.
- W4307965857 cites W2010700815 @default.
- W4307965857 cites W2025282768 @default.
- W4307965857 cites W2028979491 @default.
- W4307965857 cites W2032459303 @default.
- W4307965857 cites W2043544053 @default.
- W4307965857 cites W2065523739 @default.
- W4307965857 cites W2067804762 @default.
- W4307965857 cites W2071341764 @default.
- W4307965857 cites W2076338114 @default.
- W4307965857 cites W2100719695 @default.
- W4307965857 cites W2126154792 @default.
- W4307965857 cites W2130162705 @default.
- W4307965857 cites W2139484658 @default.
- W4307965857 cites W2142097385 @default.
- W4307965857 cites W2157049518 @default.
- W4307965857 cites W2158345841 @default.
- W4307965857 cites W2171858547 @default.
- W4307965857 cites W2172000864 @default.
- W4307965857 cites W2202951234 @default.
- W4307965857 cites W2207027366 @default.
- W4307965857 cites W2279916557 @default.
- W4307965857 cites W2317535711 @default.
- W4307965857 cites W2428971086 @default.
- W4307965857 cites W2499312536 @default.
- W4307965857 cites W2499899645 @default.
- W4307965857 cites W2513634832 @default.
- W4307965857 cites W2513884524 @default.
- W4307965857 cites W2562331740 @default.
- W4307965857 cites W2578311297 @default.
- W4307965857 cites W2590806697 @default.
- W4307965857 cites W2592370510 @default.
- W4307965857 cites W2620607894 @default.
- W4307965857 cites W2750497991 @default.
- W4307965857 cites W2752367251 @default.
- W4307965857 cites W2783853028 @default.
- W4307965857 cites W2800655747 @default.
- W4307965857 cites W2885006302 @default.
- W4307965857 cites W2896782565 @default.
- W4307965857 cites W2905093517 @default.
- W4307965857 cites W2908841991 @default.
- W4307965857 cites W2911245182 @default.
- W4307965857 cites W2921333384 @default.
- W4307965857 cites W2924169648 @default.
- W4307965857 cites W2943554448 @default.
- W4307965857 cites W2950604226 @default.
- W4307965857 cites W2951741697 @default.
- W4307965857 cites W2965897699 @default.
- W4307965857 cites W2984270338 @default.
- W4307965857 cites W2988267907 @default.
- W4307965857 cites W2990605497 @default.
- W4307965857 cites W2990945155 @default.
- W4307965857 cites W2997305502 @default.
- W4307965857 cites W3015325053 @default.
- W4307965857 cites W3024768525 @default.
- W4307965857 cites W3032988989 @default.
- W4307965857 cites W3049103587 @default.
- W4307965857 cites W3080732257 @default.
- W4307965857 cites W3081269748 @default.
- W4307965857 cites W3084183823 @default.
- W4307965857 cites W3089804072 @default.
- W4307965857 cites W3092522473 @default.
- W4307965857 cites W3122705640 @default.
- W4307965857 cites W3130541708 @default.
- W4307965857 cites W3167021888 @default.
- W4307965857 cites W3172065898 @default.
- W4307965857 cites W3199031900 @default.
- W4307965857 doi "https://doi.org/10.1080/09593330.2022.2143284" @default.
- W4307965857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36322116" @default.
- W4307965857 hasPublicationYear "2022" @default.
- W4307965857 type Work @default.
- W4307965857 citedByCount "0" @default.
- W4307965857 crossrefType "journal-article" @default.
- W4307965857 hasAuthorship W4307965857A5003975174 @default.
- W4307965857 hasAuthorship W4307965857A5025616161 @default.
- W4307965857 hasAuthorship W4307965857A5063133546 @default.
- W4307965857 hasAuthorship W4307965857A5084735110 @default.
- W4307965857 hasConcept C127313418 @default.
- W4307965857 hasConcept C129513315 @default.
- W4307965857 hasConcept C135009316 @default.
- W4307965857 hasConcept C142796444 @default.
- W4307965857 hasConcept C173163844 @default.
- W4307965857 hasConcept C187320778 @default.
- W4307965857 hasConcept C18903297 @default.
- W4307965857 hasConcept C205649164 @default.
- W4307965857 hasConcept C2778902199 @default.
- W4307965857 hasConcept C2780797713 @default.