Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307972025> ?p ?o ?g. }
- W4307972025 endingPage "6975" @default.
- W4307972025 startingPage "6964" @default.
- W4307972025 abstract "Recently, deep learning based multispectral (MS) and panchromatic (PAN) image fusion methods have been proposed, which extracted features automatically and hierarchically by a series of non-linear transformations to model the complicated imaging discrepancy. But they always pay more attention to the extraction and compensation of spatial details and use the mean squared error or mean absolute error as a loss function, regardless of the preservation of spectral information contained in multispectral images. For the sake of the improvements in both spatial and spectral resolution, this paper presents a novel fusion model that takes the spectral preservation into consideration, and learns the spectral cues from the process of generating a spectrally refined multispectral image, which is constrained by a spectral loss between the generated image and the reference image. Then these spectral cues are used to modulate the PAN features to obtain final fusion result. Experimental results on reduced-resolution and full-resolution datasets demonstrate that the proposed method can obtain a better fusion result in terms of visual inspection and evaluation indices when compared with current state-of-the-art methods." @default.
- W4307972025 created "2022-11-06" @default.
- W4307972025 creator A5022459300 @default.
- W4307972025 creator A5028235866 @default.
- W4307972025 creator A5086664284 @default.
- W4307972025 creator A5089584286 @default.
- W4307972025 date "2022-01-01" @default.
- W4307972025 modified "2023-10-16" @default.
- W4307972025 title "Learning Spectral Cues for Multispectral and Panchromatic Image Fusion" @default.
- W4307972025 cites W1976447720 @default.
- W4307972025 cites W2014886478 @default.
- W4307972025 cites W2032275874 @default.
- W4307972025 cites W2035285838 @default.
- W4307972025 cites W2065757249 @default.
- W4307972025 cites W2114161542 @default.
- W4307972025 cites W2121122468 @default.
- W4307972025 cites W2139529730 @default.
- W4307972025 cites W2163334907 @default.
- W4307972025 cites W2171108951 @default.
- W4307972025 cites W2171211028 @default.
- W4307972025 cites W2394774286 @default.
- W4307972025 cites W2462592242 @default.
- W4307972025 cites W2587329506 @default.
- W4307972025 cites W2593414223 @default.
- W4307972025 cites W2777033955 @default.
- W4307972025 cites W2790597059 @default.
- W4307972025 cites W2792111852 @default.
- W4307972025 cites W2792862011 @default.
- W4307972025 cites W2806865914 @default.
- W4307972025 cites W2889626069 @default.
- W4307972025 cites W2921660688 @default.
- W4307972025 cites W2935896423 @default.
- W4307972025 cites W2943418786 @default.
- W4307972025 cites W2948437909 @default.
- W4307972025 cites W2953478519 @default.
- W4307972025 cites W2963129413 @default.
- W4307972025 cites W2963213461 @default.
- W4307972025 cites W2963800363 @default.
- W4307972025 cites W2964275574 @default.
- W4307972025 cites W2978331778 @default.
- W4307972025 cites W2981854972 @default.
- W4307972025 cites W3023991509 @default.
- W4307972025 cites W3029812440 @default.
- W4307972025 cites W3038139892 @default.
- W4307972025 cites W3097824737 @default.
- W4307972025 cites W3102253068 @default.
- W4307972025 cites W3115223653 @default.
- W4307972025 cites W3116929039 @default.
- W4307972025 cites W3120331810 @default.
- W4307972025 cites W3132115664 @default.
- W4307972025 cites W3135444107 @default.
- W4307972025 cites W3150135133 @default.
- W4307972025 cites W3160949528 @default.
- W4307972025 cites W3171288715 @default.
- W4307972025 cites W3203100902 @default.
- W4307972025 cites W3203670180 @default.
- W4307972025 cites W3206049508 @default.
- W4307972025 cites W3206518131 @default.
- W4307972025 cites W4200127876 @default.
- W4307972025 cites W4200634427 @default.
- W4307972025 cites W4285203116 @default.
- W4307972025 doi "https://doi.org/10.1109/tip.2022.3215906" @default.
- W4307972025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36322493" @default.
- W4307972025 hasPublicationYear "2022" @default.
- W4307972025 type Work @default.
- W4307972025 citedByCount "0" @default.
- W4307972025 crossrefType "journal-article" @default.
- W4307972025 hasAuthorship W4307972025A5022459300 @default.
- W4307972025 hasAuthorship W4307972025A5028235866 @default.
- W4307972025 hasAuthorship W4307972025A5086664284 @default.
- W4307972025 hasAuthorship W4307972025A5089584286 @default.
- W4307972025 hasConcept C105795698 @default.
- W4307972025 hasConcept C107445234 @default.
- W4307972025 hasConcept C115961682 @default.
- W4307972025 hasConcept C138885662 @default.
- W4307972025 hasConcept C139945424 @default.
- W4307972025 hasConcept C153180895 @default.
- W4307972025 hasConcept C154945302 @default.
- W4307972025 hasConcept C158525013 @default.
- W4307972025 hasConcept C160633673 @default.
- W4307972025 hasConcept C173163844 @default.
- W4307972025 hasConcept C205372480 @default.
- W4307972025 hasConcept C31972630 @default.
- W4307972025 hasConcept C33923547 @default.
- W4307972025 hasConcept C41008148 @default.
- W4307972025 hasConcept C41895202 @default.
- W4307972025 hasConcept C69744172 @default.
- W4307972025 hasConceptScore W4307972025C105795698 @default.
- W4307972025 hasConceptScore W4307972025C107445234 @default.
- W4307972025 hasConceptScore W4307972025C115961682 @default.
- W4307972025 hasConceptScore W4307972025C138885662 @default.
- W4307972025 hasConceptScore W4307972025C139945424 @default.
- W4307972025 hasConceptScore W4307972025C153180895 @default.
- W4307972025 hasConceptScore W4307972025C154945302 @default.
- W4307972025 hasConceptScore W4307972025C158525013 @default.
- W4307972025 hasConceptScore W4307972025C160633673 @default.
- W4307972025 hasConceptScore W4307972025C173163844 @default.
- W4307972025 hasConceptScore W4307972025C205372480 @default.