Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307974904> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4307974904 endingPage "9" @default.
- W4307974904 startingPage "1" @default.
- W4307974904 abstract "Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, including thinking, the ability to carry on a conversation, and judgment and response to environment. Clinically, there is no single test to effectively diagnose Alzheimer disease. However, computed tomography (CT) and magnetic resonance imaging (MRI) scans can be used to help in AD diagnosis by observing critical changes in the size of different brain areas, typically parietal and temporal lobes areas. In this work, an integrative mulitresolutional ensemble deep learning-based framework is proposed to achieve better predictive performance for the diagnosis of Alzheimer disease. Unlike ResNet, DenseNet and their variants proposed pipeline utilizes PartialNet in a hierarchical design tailored to AD detection using brain MRIs. The advantage of the proposed analysis system is that PartialNet diversified the depth and deep supervision. Additionally, it also incorporates the properties of identity mappings which makes it powerful in better learning due to feature reuse. Besides, the proposed ensemble PartialNet is better in vanishing gradient, diminishing forward-flow with low number of parameters and better training time in comparison to its counter network. The proposed analysis pipeline has been tested and evaluated on benchmark ADNI dataset collected from 379 subjects patients. Quantitative validation of the obtained results documented our framework's capability, outperforming state-of-the-art learning approaches for both multi-and binary-class AD detection." @default.
- W4307974904 created "2022-11-06" @default.
- W4307974904 creator A5000074087 @default.
- W4307974904 creator A5003428654 @default.
- W4307974904 creator A5017072744 @default.
- W4307974904 creator A5019852514 @default.
- W4307974904 creator A5031266770 @default.
- W4307974904 date "2022-01-01" @default.
- W4307974904 modified "2023-09-30" @default.
- W4307974904 title "A Cascaded Mutliresolution Ensemble Deep Learning Framework for Large Scale Alzheimer's Disease Detection using Brain MRIs" @default.
- W4307974904 doi "https://doi.org/10.1109/tcbb.2022.3219032" @default.
- W4307974904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36322495" @default.
- W4307974904 hasPublicationYear "2022" @default.
- W4307974904 type Work @default.
- W4307974904 citedByCount "2" @default.
- W4307974904 countsByYear W43079749042023 @default.
- W4307974904 crossrefType "journal-article" @default.
- W4307974904 hasAuthorship W4307974904A5000074087 @default.
- W4307974904 hasAuthorship W4307974904A5003428654 @default.
- W4307974904 hasAuthorship W4307974904A5017072744 @default.
- W4307974904 hasAuthorship W4307974904A5019852514 @default.
- W4307974904 hasAuthorship W4307974904A5031266770 @default.
- W4307974904 hasConcept C108583219 @default.
- W4307974904 hasConcept C119857082 @default.
- W4307974904 hasConcept C13280743 @default.
- W4307974904 hasConcept C138885662 @default.
- W4307974904 hasConcept C153180895 @default.
- W4307974904 hasConcept C154945302 @default.
- W4307974904 hasConcept C185798385 @default.
- W4307974904 hasConcept C199360897 @default.
- W4307974904 hasConcept C205649164 @default.
- W4307974904 hasConcept C2776401178 @default.
- W4307974904 hasConcept C41008148 @default.
- W4307974904 hasConcept C41895202 @default.
- W4307974904 hasConcept C43521106 @default.
- W4307974904 hasConceptScore W4307974904C108583219 @default.
- W4307974904 hasConceptScore W4307974904C119857082 @default.
- W4307974904 hasConceptScore W4307974904C13280743 @default.
- W4307974904 hasConceptScore W4307974904C138885662 @default.
- W4307974904 hasConceptScore W4307974904C153180895 @default.
- W4307974904 hasConceptScore W4307974904C154945302 @default.
- W4307974904 hasConceptScore W4307974904C185798385 @default.
- W4307974904 hasConceptScore W4307974904C199360897 @default.
- W4307974904 hasConceptScore W4307974904C205649164 @default.
- W4307974904 hasConceptScore W4307974904C2776401178 @default.
- W4307974904 hasConceptScore W4307974904C41008148 @default.
- W4307974904 hasConceptScore W4307974904C41895202 @default.
- W4307974904 hasConceptScore W4307974904C43521106 @default.
- W4307974904 hasLocation W43079749041 @default.
- W4307974904 hasLocation W43079749042 @default.
- W4307974904 hasOpenAccess W4307974904 @default.
- W4307974904 hasPrimaryLocation W43079749041 @default.
- W4307974904 hasRelatedWork W2795261237 @default.
- W4307974904 hasRelatedWork W3014300295 @default.
- W4307974904 hasRelatedWork W3164822677 @default.
- W4307974904 hasRelatedWork W4223943233 @default.
- W4307974904 hasRelatedWork W4225161397 @default.
- W4307974904 hasRelatedWork W4312200629 @default.
- W4307974904 hasRelatedWork W4360585206 @default.
- W4307974904 hasRelatedWork W4364306694 @default.
- W4307974904 hasRelatedWork W4380075502 @default.
- W4307974904 hasRelatedWork W4380086463 @default.
- W4307974904 isParatext "false" @default.
- W4307974904 isRetracted "false" @default.
- W4307974904 workType "article" @default.