Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307977696> ?p ?o ?g. }
- W4307977696 abstract "Risk stratification and recommendation for surgery for intraductal papillary mucinous neoplasm (IPMN) are currently based on consensus guidelines. Risk stratification from presurgery histology is only potentially decisive owing to the low sensitivity of fine-needle aspiration. In this study, we developed and validated a deep learning-based method to distinguish between IPMN with low grade dysplasia and IPMN with high grade dysplasia/invasive carcinoma using endoscopic ultrasound (EUS) images.For model training, we acquired a total of 3355 EUS images from 43 patients who underwent pancreatectomy from March 2015 to August 2021. All patients had histologically proven IPMN. We used transfer learning to fine-tune a convolutional neural network and to classify low grade IPMN from high grade IPMN/invasive carcinoma. Our test set consisted of 1823 images from 27 patients, recruiting 11 patients retrospectively, 7 patients prospectively, and 9 patients externally. We compared our results with the prediction based on international consensus guidelines.Our approach could classify low grade from high grade/invasive carcinoma in the test set with an accuracy of 99.6 % (95 %CI 99.5 %-99.9 %). Our deep learning model achieved superior accuracy in prediction of the histological outcome compared with any individual guideline, which have accuracies between 51.8 % (95 %CI 31.9 %-71.3 %) and 70.4 % (95 %CI 49.8-86.2).This pilot study demonstrated that deep learning in IPMN-EUS images can predict the histological outcome with high accuracy." @default.
- W4307977696 created "2022-11-07" @default.
- W4307977696 creator A5000288190 @default.
- W4307977696 creator A5009062044 @default.
- W4307977696 creator A5011216679 @default.
- W4307977696 creator A5023560577 @default.
- W4307977696 creator A5045306266 @default.
- W4307977696 creator A5064668609 @default.
- W4307977696 creator A5064715987 @default.
- W4307977696 creator A5066208050 @default.
- W4307977696 creator A5073445337 @default.
- W4307977696 creator A5085701966 @default.
- W4307977696 creator A5088890575 @default.
- W4307977696 creator A5089608755 @default.
- W4307977696 date "2022-11-02" @default.
- W4307977696 modified "2023-10-14" @default.
- W4307977696 title "Accurate prediction of histological grading of intraductal papillary mucinous neoplasia using deep learning" @default.
- W4307977696 cites W1589549127 @default.
- W4307977696 cites W2016448153 @default.
- W4307977696 cites W2108598243 @default.
- W4307977696 cites W2158107279 @default.
- W4307977696 cites W2339886540 @default.
- W4307977696 cites W2340209369 @default.
- W4307977696 cites W2526863467 @default.
- W4307977696 cites W2541669745 @default.
- W4307977696 cites W2736069212 @default.
- W4307977696 cites W2752975668 @default.
- W4307977696 cites W2789917807 @default.
- W4307977696 cites W2798191310 @default.
- W4307977696 cites W2899061025 @default.
- W4307977696 cites W2945284524 @default.
- W4307977696 cites W2964121744 @default.
- W4307977696 cites W2973355180 @default.
- W4307977696 cites W2992308087 @default.
- W4307977696 cites W2999377002 @default.
- W4307977696 cites W3001061830 @default.
- W4307977696 cites W3006436762 @default.
- W4307977696 cites W3016260976 @default.
- W4307977696 cites W3027658921 @default.
- W4307977696 cites W3028195043 @default.
- W4307977696 cites W3044711955 @default.
- W4307977696 cites W3092422480 @default.
- W4307977696 cites W3109647545 @default.
- W4307977696 cites W3116208522 @default.
- W4307977696 cites W3132965430 @default.
- W4307977696 cites W3146983201 @default.
- W4307977696 cites W3167635763 @default.
- W4307977696 cites W3173760205 @default.
- W4307977696 cites W3204837456 @default.
- W4307977696 cites W3205380085 @default.
- W4307977696 doi "https://doi.org/10.1055/a-1971-1274" @default.
- W4307977696 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36323331" @default.
- W4307977696 hasPublicationYear "2022" @default.
- W4307977696 type Work @default.
- W4307977696 citedByCount "4" @default.
- W4307977696 countsByYear W43079776962023 @default.
- W4307977696 crossrefType "journal-article" @default.
- W4307977696 hasAuthorship W4307977696A5000288190 @default.
- W4307977696 hasAuthorship W4307977696A5009062044 @default.
- W4307977696 hasAuthorship W4307977696A5011216679 @default.
- W4307977696 hasAuthorship W4307977696A5023560577 @default.
- W4307977696 hasAuthorship W4307977696A5045306266 @default.
- W4307977696 hasAuthorship W4307977696A5064668609 @default.
- W4307977696 hasAuthorship W4307977696A5064715987 @default.
- W4307977696 hasAuthorship W4307977696A5066208050 @default.
- W4307977696 hasAuthorship W4307977696A5073445337 @default.
- W4307977696 hasAuthorship W4307977696A5085701966 @default.
- W4307977696 hasAuthorship W4307977696A5088890575 @default.
- W4307977696 hasAuthorship W4307977696A5089608755 @default.
- W4307977696 hasConcept C126322002 @default.
- W4307977696 hasConcept C126838900 @default.
- W4307977696 hasConcept C127413603 @default.
- W4307977696 hasConcept C147176958 @default.
- W4307977696 hasConcept C2775894508 @default.
- W4307977696 hasConcept C2776469228 @default.
- W4307977696 hasConcept C2777286243 @default.
- W4307977696 hasConcept C2778764654 @default.
- W4307977696 hasConcept C2780390042 @default.
- W4307977696 hasConcept C71924100 @default.
- W4307977696 hasConceptScore W4307977696C126322002 @default.
- W4307977696 hasConceptScore W4307977696C126838900 @default.
- W4307977696 hasConceptScore W4307977696C127413603 @default.
- W4307977696 hasConceptScore W4307977696C147176958 @default.
- W4307977696 hasConceptScore W4307977696C2775894508 @default.
- W4307977696 hasConceptScore W4307977696C2776469228 @default.
- W4307977696 hasConceptScore W4307977696C2777286243 @default.
- W4307977696 hasConceptScore W4307977696C2778764654 @default.
- W4307977696 hasConceptScore W4307977696C2780390042 @default.
- W4307977696 hasConceptScore W4307977696C71924100 @default.
- W4307977696 hasFunder F4320320879 @default.
- W4307977696 hasFunder F4320323556 @default.
- W4307977696 hasLocation W43079776961 @default.
- W4307977696 hasLocation W43079776962 @default.
- W4307977696 hasOpenAccess W4307977696 @default.
- W4307977696 hasPrimaryLocation W43079776961 @default.
- W4307977696 hasRelatedWork W1240324322 @default.
- W4307977696 hasRelatedWork W2070339938 @default.
- W4307977696 hasRelatedWork W2138668924 @default.
- W4307977696 hasRelatedWork W2156700895 @default.
- W4307977696 hasRelatedWork W2323473601 @default.