Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308013155> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4308013155 abstract "Background: This paper is an improvement of a previous work on the problem recovering a function or probability density function from a finite number of its geometric moments, [1]. The previous worked solved the problem with the help of the B-Spline theory which is a great approach as long as the resulting linear system is not very large. In this work, two solution algorithms based on the approximate representation of the target probability distribution function via an orthogonal expansion are provided. One primary application of this theory is the reconstruction of the Particle Size Distribution (PSD), occurring in chemical engineering applications. Another application of this theory is the reconstruction of the Radon transform of an image at an unknown angle using the moments of the transform at known angles which leads to the reconstruction of the image form limited data. Objective: The aim is to recover a probability density function from a finite number of its geometric moments. Methods: The tool is the orthogonal expansion approach. The Shifted-Legendre Polynomials and the Chebyshev Polynomials as bases for the orthogonal expansion are used in this study. Results: A high degree of accuracy has been obtained in recovering a function without facing a possible ill-conditioned linear system, which is the case with many typical approaches of solving the problem. In fact, for a normalized template function f on the interval [0, 1], and a reconstructed function ; the reconstruction accuracy is measured in two domains. One is the moment domain, in which the error (difference between the moments of f and the moments of ) is zero. The other measure is the standard difference in the norm -space || f - || which can be ≈ 10 -6 or less. Conclusion: This paper discusses the problem of recovering a function from a finite number of its geometric moments for the PSD application. Linear transformations were used, as needed, so that the function is supported on the unit interval [0, 1], or on [0, α] for some choice of α. This transformation forces the sequence of moments to vanish. Then, an orthogonal expansion of the Scaled Shifted Legendre Polynomials, as well as the Chebyshev Polynomials, are developed. The result shows good accuracy in recovering different types of synthetic functions. It is believed that up to fifteen moments, this approach is safe and reliable." @default.
- W4308013155 created "2022-11-07" @default.
- W4308013155 creator A5009481606 @default.
- W4308013155 creator A5033084533 @default.
- W4308013155 date "2022-11-01" @default.
- W4308013155 modified "2023-10-04" @default.
- W4308013155 title "On Orthogonal Polynomials and Finite Moment Problem" @default.
- W4308013155 cites W1593833610 @default.
- W4308013155 cites W1969783314 @default.
- W4308013155 cites W1972968725 @default.
- W4308013155 cites W1975868984 @default.
- W4308013155 cites W1979467333 @default.
- W4308013155 cites W1990317771 @default.
- W4308013155 cites W1997691678 @default.
- W4308013155 cites W2015769927 @default.
- W4308013155 cites W2030748167 @default.
- W4308013155 cites W2054790064 @default.
- W4308013155 cites W2066860688 @default.
- W4308013155 cites W2070029751 @default.
- W4308013155 cites W2294445361 @default.
- W4308013155 cites W2755347472 @default.
- W4308013155 cites W2903275484 @default.
- W4308013155 cites W3011879085 @default.
- W4308013155 cites W3012256370 @default.
- W4308013155 cites W3012401602 @default.
- W4308013155 cites W3018777034 @default.
- W4308013155 cites W4212770992 @default.
- W4308013155 cites W4285227535 @default.
- W4308013155 cites W4285261085 @default.
- W4308013155 doi "https://doi.org/10.2174/18741231-v16-e2209260" @default.
- W4308013155 hasPublicationYear "2022" @default.
- W4308013155 type Work @default.
- W4308013155 citedByCount "7" @default.
- W4308013155 countsByYear W43080131552022 @default.
- W4308013155 countsByYear W43080131552023 @default.
- W4308013155 crossrefType "journal-article" @default.
- W4308013155 hasAuthorship W4308013155A5009481606 @default.
- W4308013155 hasAuthorship W4308013155A5033084533 @default.
- W4308013155 hasBestOaLocation W43080131551 @default.
- W4308013155 hasConcept C105795698 @default.
- W4308013155 hasConcept C10628310 @default.
- W4308013155 hasConcept C111458787 @default.
- W4308013155 hasConcept C121332964 @default.
- W4308013155 hasConcept C129785596 @default.
- W4308013155 hasConcept C134306372 @default.
- W4308013155 hasConcept C135925592 @default.
- W4308013155 hasConcept C179254644 @default.
- W4308013155 hasConcept C197055811 @default.
- W4308013155 hasConcept C28826006 @default.
- W4308013155 hasConcept C33923547 @default.
- W4308013155 hasConcept C74650414 @default.
- W4308013155 hasConceptScore W4308013155C105795698 @default.
- W4308013155 hasConceptScore W4308013155C10628310 @default.
- W4308013155 hasConceptScore W4308013155C111458787 @default.
- W4308013155 hasConceptScore W4308013155C121332964 @default.
- W4308013155 hasConceptScore W4308013155C129785596 @default.
- W4308013155 hasConceptScore W4308013155C134306372 @default.
- W4308013155 hasConceptScore W4308013155C135925592 @default.
- W4308013155 hasConceptScore W4308013155C179254644 @default.
- W4308013155 hasConceptScore W4308013155C197055811 @default.
- W4308013155 hasConceptScore W4308013155C28826006 @default.
- W4308013155 hasConceptScore W4308013155C33923547 @default.
- W4308013155 hasConceptScore W4308013155C74650414 @default.
- W4308013155 hasIssue "1" @default.
- W4308013155 hasLocation W43080131551 @default.
- W4308013155 hasOpenAccess W4308013155 @default.
- W4308013155 hasPrimaryLocation W43080131551 @default.
- W4308013155 hasRelatedWork W1996752554 @default.
- W4308013155 hasRelatedWork W2075688913 @default.
- W4308013155 hasRelatedWork W2370809978 @default.
- W4308013155 hasRelatedWork W3107855474 @default.
- W4308013155 hasRelatedWork W3165311881 @default.
- W4308013155 hasRelatedWork W3212783110 @default.
- W4308013155 hasRelatedWork W4308013155 @default.
- W4308013155 hasRelatedWork W4327850361 @default.
- W4308013155 hasRelatedWork W4377138849 @default.
- W4308013155 hasRelatedWork W865932272 @default.
- W4308013155 hasVolume "16" @default.
- W4308013155 isParatext "false" @default.
- W4308013155 isRetracted "false" @default.
- W4308013155 workType "article" @default.