Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308016146> ?p ?o ?g. }
- W4308016146 endingPage "621" @default.
- W4308016146 startingPage "597" @default.
- W4308016146 abstract "Model diagnostics and forecast evaluation are closely related tasks, with the former concerning in-sample goodness (or lack) of fit and the latter addressing predictive performance out-of-sample. We review the ubiquitous setting in which forecasts are cast in the form of quantiles or quantile-bounded prediction intervals. We distinguish unconditional calibration, which corresponds to classical coverage criteria, from the stronger notion of conditional calibration, as can be visualized in quantile reliability diagrams. Consistent scoring functions—including, but not limited to, the widely used asymmetricpiecewise linear score or pinball loss—provide for comparative assessment and ranking, and link to the coefficient of determination and skill scores. We illustrate the use of these tools on Engel's food expenditure data, the Global Energy Forecasting Competition 2014, and the US COVID-19 Forecast Hub." @default.
- W4308016146 created "2022-11-07" @default.
- W4308016146 creator A5001322748 @default.
- W4308016146 creator A5002538750 @default.
- W4308016146 creator A5014228448 @default.
- W4308016146 creator A5017110908 @default.
- W4308016146 creator A5025955938 @default.
- W4308016146 creator A5027002291 @default.
- W4308016146 creator A5046150465 @default.
- W4308016146 creator A5047474927 @default.
- W4308016146 creator A5060759568 @default.
- W4308016146 creator A5066419628 @default.
- W4308016146 creator A5081121618 @default.
- W4308016146 date "2023-03-10" @default.
- W4308016146 modified "2023-10-01" @default.
- W4308016146 title "Model Diagnostics and Forecast Evaluation for Quantiles" @default.
- W4308016146 cites W1484387278 @default.
- W4308016146 cites W1977970167 @default.
- W4308016146 cites W1983125795 @default.
- W4308016146 cites W1985643209 @default.
- W4308016146 cites W1989780145 @default.
- W4308016146 cites W1996819337 @default.
- W4308016146 cites W2008709824 @default.
- W4308016146 cites W2016511206 @default.
- W4308016146 cites W2025720061 @default.
- W4308016146 cites W2028745284 @default.
- W4308016146 cites W2075965721 @default.
- W4308016146 cites W2080787071 @default.
- W4308016146 cites W2096904991 @default.
- W4308016146 cites W2118711140 @default.
- W4308016146 cites W2118788550 @default.
- W4308016146 cites W2126106688 @default.
- W4308016146 cites W2126795629 @default.
- W4308016146 cites W2128775770 @default.
- W4308016146 cites W2130715829 @default.
- W4308016146 cites W2139786505 @default.
- W4308016146 cites W2150401581 @default.
- W4308016146 cites W2167162925 @default.
- W4308016146 cites W2170206178 @default.
- W4308016146 cites W2296521892 @default.
- W4308016146 cites W2563750202 @default.
- W4308016146 cites W2600899291 @default.
- W4308016146 cites W2742375119 @default.
- W4308016146 cites W2796293253 @default.
- W4308016146 cites W2909758842 @default.
- W4308016146 cites W2944472092 @default.
- W4308016146 cites W2955726294 @default.
- W4308016146 cites W2963352444 @default.
- W4308016146 cites W2963870508 @default.
- W4308016146 cites W2964208955 @default.
- W4308016146 cites W2978345901 @default.
- W4308016146 cites W3010967283 @default.
- W4308016146 cites W3024158773 @default.
- W4308016146 cites W3031381838 @default.
- W4308016146 cites W3047801607 @default.
- W4308016146 cites W3092785921 @default.
- W4308016146 cites W3100994739 @default.
- W4308016146 cites W3102027041 @default.
- W4308016146 cites W3106414954 @default.
- W4308016146 cites W3120596906 @default.
- W4308016146 cites W3124842399 @default.
- W4308016146 cites W3125551545 @default.
- W4308016146 cites W3134900865 @default.
- W4308016146 cites W3136050849 @default.
- W4308016146 cites W3157968023 @default.
- W4308016146 cites W3160899915 @default.
- W4308016146 cites W3176997767 @default.
- W4308016146 cites W3196188801 @default.
- W4308016146 cites W3198028733 @default.
- W4308016146 cites W3203922546 @default.
- W4308016146 cites W3205940110 @default.
- W4308016146 cites W3210061498 @default.
- W4308016146 cites W4205806204 @default.
- W4308016146 cites W4213002345 @default.
- W4308016146 cites W4213041519 @default.
- W4308016146 cites W4213326991 @default.
- W4308016146 cites W4223487063 @default.
- W4308016146 cites W4223895209 @default.
- W4308016146 cites W4226031889 @default.
- W4308016146 cites W4229053758 @default.
- W4308016146 cites W4232071093 @default.
- W4308016146 cites W4241653265 @default.
- W4308016146 cites W4283745601 @default.
- W4308016146 cites W4289261700 @default.
- W4308016146 doi "https://doi.org/10.1146/annurev-statistics-032921-020240" @default.
- W4308016146 hasPublicationYear "2023" @default.
- W4308016146 type Work @default.
- W4308016146 citedByCount "4" @default.
- W4308016146 countsByYear W43080161462023 @default.
- W4308016146 crossrefType "journal-article" @default.
- W4308016146 hasAuthorship W4308016146A5001322748 @default.
- W4308016146 hasAuthorship W4308016146A5002538750 @default.
- W4308016146 hasAuthorship W4308016146A5014228448 @default.
- W4308016146 hasAuthorship W4308016146A5017110908 @default.
- W4308016146 hasAuthorship W4308016146A5025955938 @default.
- W4308016146 hasAuthorship W4308016146A5027002291 @default.
- W4308016146 hasAuthorship W4308016146A5046150465 @default.
- W4308016146 hasAuthorship W4308016146A5047474927 @default.