Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308016657> ?p ?o ?g. }
- W4308016657 abstract "Abstract Background/M&M A vital aspect of disease management and policy making lies in the understanding of the universal distribution of diseases. Nevertheless, due to differences all-over host groups and space–time outbreak activities, data are subject to intricacies. Herein, Bayesian spatio-temporal models were proposed to model and map malaria and anaemia risk ratio in space and time as well as to ascertain risk factors related to these diseases and the most endemic states in Nigeria. Parameter estimation was performed by employing the R-integrated nested Laplace approximation (INLA) package and Deviance Information Criteria were applied to select the best model. Results In malaria, model 7 which basically suggests that previous trend of an event cannot account for future trend i.e., Interaction with one random time effect (random walk) has the least deviance. On the other hand, model 6 assumes that previous event can be used to predict future event i.e., (Interaction with one random time effect (ar1)) gave the least deviance in anaemia. Discussion For malaria and anaemia, models 7 and 6 were selected to model and map these diseases in Nigeria, because these models have the capacity to receive strength from adjacent states, in a manner that neighbouring states have the same risk. Changes in risk and clustering with a high record of these diseases among states in Nigeria was observed. However, despite these changes, the total risk of malaria and anaemia for 2010 and 2015 was unaffected. Conclusion Notwithstanding the methods applied, this study will be valuable to the advancement of a spatio-temporal approach for analyzing malaria and anaemia risk in Nigeria." @default.
- W4308016657 created "2022-11-07" @default.
- W4308016657 creator A5022950333 @default.
- W4308016657 creator A5027665179 @default.
- W4308016657 creator A5039030079 @default.
- W4308016657 date "2022-11-01" @default.
- W4308016657 modified "2023-10-15" @default.
- W4308016657 title "Bayesian spatio-temporal modelling and mapping of malaria and anaemia among children between 0 and 59 months in Nigeria" @default.
- W4308016657 cites W1849288288 @default.
- W4308016657 cites W1970564042 @default.
- W4308016657 cites W2004014822 @default.
- W4308016657 cites W2009067860 @default.
- W4308016657 cites W2042428379 @default.
- W4308016657 cites W2092990185 @default.
- W4308016657 cites W2118287049 @default.
- W4308016657 cites W2125775988 @default.
- W4308016657 cites W2154315887 @default.
- W4308016657 cites W2165936664 @default.
- W4308016657 cites W2330912863 @default.
- W4308016657 cites W2617060966 @default.
- W4308016657 cites W2896734093 @default.
- W4308016657 cites W2960280466 @default.
- W4308016657 cites W2990745022 @default.
- W4308016657 cites W2998838145 @default.
- W4308016657 cites W3009644058 @default.
- W4308016657 cites W3082170233 @default.
- W4308016657 cites W3099342035 @default.
- W4308016657 cites W3117956590 @default.
- W4308016657 cites W3150575321 @default.
- W4308016657 cites W3153728075 @default.
- W4308016657 cites W3163238527 @default.
- W4308016657 cites W3192348018 @default.
- W4308016657 cites W3195683392 @default.
- W4308016657 cites W3210285580 @default.
- W4308016657 cites W4200256582 @default.
- W4308016657 cites W4220658761 @default.
- W4308016657 cites W4255113605 @default.
- W4308016657 doi "https://doi.org/10.1186/s12936-022-04319-y" @default.
- W4308016657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36320061" @default.
- W4308016657 hasPublicationYear "2022" @default.
- W4308016657 type Work @default.
- W4308016657 citedByCount "3" @default.
- W4308016657 countsByYear W43080166572023 @default.
- W4308016657 crossrefType "journal-article" @default.
- W4308016657 hasAuthorship W4308016657A5022950333 @default.
- W4308016657 hasAuthorship W4308016657A5027665179 @default.
- W4308016657 hasAuthorship W4308016657A5039030079 @default.
- W4308016657 hasBestOaLocation W43080166571 @default.
- W4308016657 hasConcept C105795698 @default.
- W4308016657 hasConcept C107673813 @default.
- W4308016657 hasConcept C116675565 @default.
- W4308016657 hasConcept C144024400 @default.
- W4308016657 hasConcept C149782125 @default.
- W4308016657 hasConcept C149923435 @default.
- W4308016657 hasConcept C159047783 @default.
- W4308016657 hasConcept C160234255 @default.
- W4308016657 hasConcept C17634605 @default.
- W4308016657 hasConcept C177599991 @default.
- W4308016657 hasConcept C203014093 @default.
- W4308016657 hasConcept C205649164 @default.
- W4308016657 hasConcept C2778048844 @default.
- W4308016657 hasConcept C33923547 @default.
- W4308016657 hasConcept C41008148 @default.
- W4308016657 hasConcept C71924100 @default.
- W4308016657 hasConcept C73555534 @default.
- W4308016657 hasConcept C99454951 @default.
- W4308016657 hasConceptScore W4308016657C105795698 @default.
- W4308016657 hasConceptScore W4308016657C107673813 @default.
- W4308016657 hasConceptScore W4308016657C116675565 @default.
- W4308016657 hasConceptScore W4308016657C144024400 @default.
- W4308016657 hasConceptScore W4308016657C149782125 @default.
- W4308016657 hasConceptScore W4308016657C149923435 @default.
- W4308016657 hasConceptScore W4308016657C159047783 @default.
- W4308016657 hasConceptScore W4308016657C160234255 @default.
- W4308016657 hasConceptScore W4308016657C17634605 @default.
- W4308016657 hasConceptScore W4308016657C177599991 @default.
- W4308016657 hasConceptScore W4308016657C203014093 @default.
- W4308016657 hasConceptScore W4308016657C205649164 @default.
- W4308016657 hasConceptScore W4308016657C2778048844 @default.
- W4308016657 hasConceptScore W4308016657C33923547 @default.
- W4308016657 hasConceptScore W4308016657C41008148 @default.
- W4308016657 hasConceptScore W4308016657C71924100 @default.
- W4308016657 hasConceptScore W4308016657C73555534 @default.
- W4308016657 hasConceptScore W4308016657C99454951 @default.
- W4308016657 hasIssue "1" @default.
- W4308016657 hasLocation W43080166571 @default.
- W4308016657 hasLocation W43080166572 @default.
- W4308016657 hasLocation W43080166573 @default.
- W4308016657 hasLocation W43080166574 @default.
- W4308016657 hasOpenAccess W4308016657 @default.
- W4308016657 hasPrimaryLocation W43080166571 @default.
- W4308016657 hasRelatedWork W2065130512 @default.
- W4308016657 hasRelatedWork W2092044200 @default.
- W4308016657 hasRelatedWork W2157769062 @default.
- W4308016657 hasRelatedWork W2354609907 @default.
- W4308016657 hasRelatedWork W261266656 @default.
- W4308016657 hasRelatedWork W2643715342 @default.
- W4308016657 hasRelatedWork W2748952813 @default.
- W4308016657 hasRelatedWork W2772689174 @default.
- W4308016657 hasRelatedWork W2899084033 @default.