Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308019809> ?p ?o ?g. }
- W4308019809 abstract "Abstract Background There is growing enthusiasm for the application of machine learning (ML) and artificial intelligence (AI) techniques to clinical research and practice. However, instructions on how to develop robust high-quality ML and AI in medicine are scarce. In this paper, we provide a practical example of techniques that facilitate the development of high-quality ML systems including data pre-processing, hyperparameter tuning, and model comparison using open-source software and data. Methods We used open-source software and a publicly available dataset to train and validate multiple ML models to classify breast masses into benign or malignant using mammography image features and patient age. We compared algorithm predictions to the ground truth of histopathologic evaluation. We provide step-by-step instructions with accompanying code lines. Findings Performance of the five algorithms at classifying breast masses as benign or malignant based on mammography image features and patient age was statistically equivalent ( P > 0.05). Area under the receiver operating characteristics curve (AUROC) for the logistic regression with elastic net penalty was 0.89 (95% CI 0.85 – 0.94), for the Extreme Gradient Boosting Tree 0.88 (95% CI 0.83 – 0.93), for the Multivariate Adaptive Regression Spline algorithm 0.88 (95% CI 0.83 – 0.93), for the Support Vector Machine 0.89 (95% CI 0.84 – 0.93), and for the neural network 0.89 (95% CI 0.84 – 0.93). Interpretation Our paper allows clinicians and medical researchers who are interested in using ML algorithms to understand and recreate the elements of a comprehensive ML analysis. Following our instructions may help to improve model generalizability and reproducibility in medical ML studies." @default.
- W4308019809 created "2022-11-07" @default.
- W4308019809 creator A5007503847 @default.
- W4308019809 creator A5038685423 @default.
- W4308019809 creator A5081505570 @default.
- W4308019809 date "2022-11-01" @default.
- W4308019809 modified "2023-10-12" @default.
- W4308019809 title "Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison" @default.
- W4308019809 cites W1995396954 @default.
- W4308019809 cites W2084396669 @default.
- W4308019809 cites W2125899728 @default.
- W4308019809 cites W2129925362 @default.
- W4308019809 cites W2133160781 @default.
- W4308019809 cites W2282821441 @default.
- W4308019809 cites W2525984666 @default.
- W4308019809 cites W2557738935 @default.
- W4308019809 cites W2765304416 @default.
- W4308019809 cites W2772089072 @default.
- W4308019809 cites W2801005005 @default.
- W4308019809 cites W2803760365 @default.
- W4308019809 cites W2895763047 @default.
- W4308019809 cites W2934399013 @default.
- W4308019809 cites W2936573766 @default.
- W4308019809 cites W2971797472 @default.
- W4308019809 cites W2981869278 @default.
- W4308019809 cites W3000344043 @default.
- W4308019809 cites W3007453563 @default.
- W4308019809 cites W3009925463 @default.
- W4308019809 cites W3084438218 @default.
- W4308019809 cites W3086029573 @default.
- W4308019809 cites W3112315590 @default.
- W4308019809 cites W3113493652 @default.
- W4308019809 cites W3136907493 @default.
- W4308019809 cites W3136933888 @default.
- W4308019809 cites W3138697839 @default.
- W4308019809 cites W3139234154 @default.
- W4308019809 cites W3167795874 @default.
- W4308019809 cites W3182130929 @default.
- W4308019809 cites W3192175805 @default.
- W4308019809 cites W4210494085 @default.
- W4308019809 cites W4210788280 @default.
- W4308019809 cites W4213279130 @default.
- W4308019809 cites W4297799353 @default.
- W4308019809 doi "https://doi.org/10.1186/s12874-022-01758-8" @default.
- W4308019809 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36319956" @default.
- W4308019809 hasPublicationYear "2022" @default.
- W4308019809 type Work @default.
- W4308019809 citedByCount "8" @default.
- W4308019809 countsByYear W43080198092023 @default.
- W4308019809 crossrefType "journal-article" @default.
- W4308019809 hasAuthorship W4308019809A5007503847 @default.
- W4308019809 hasAuthorship W4308019809A5038685423 @default.
- W4308019809 hasAuthorship W4308019809A5081505570 @default.
- W4308019809 hasBestOaLocation W43080198091 @default.
- W4308019809 hasConcept C10485038 @default.
- W4308019809 hasConcept C11413529 @default.
- W4308019809 hasConcept C119857082 @default.
- W4308019809 hasConcept C121608353 @default.
- W4308019809 hasConcept C12267149 @default.
- W4308019809 hasConcept C126322002 @default.
- W4308019809 hasConcept C151956035 @default.
- W4308019809 hasConcept C154945302 @default.
- W4308019809 hasConcept C2780472235 @default.
- W4308019809 hasConcept C41008148 @default.
- W4308019809 hasConcept C50644808 @default.
- W4308019809 hasConcept C530470458 @default.
- W4308019809 hasConcept C58471807 @default.
- W4308019809 hasConcept C71924100 @default.
- W4308019809 hasConcept C84525736 @default.
- W4308019809 hasConcept C8642999 @default.
- W4308019809 hasConceptScore W4308019809C10485038 @default.
- W4308019809 hasConceptScore W4308019809C11413529 @default.
- W4308019809 hasConceptScore W4308019809C119857082 @default.
- W4308019809 hasConceptScore W4308019809C121608353 @default.
- W4308019809 hasConceptScore W4308019809C12267149 @default.
- W4308019809 hasConceptScore W4308019809C126322002 @default.
- W4308019809 hasConceptScore W4308019809C151956035 @default.
- W4308019809 hasConceptScore W4308019809C154945302 @default.
- W4308019809 hasConceptScore W4308019809C2780472235 @default.
- W4308019809 hasConceptScore W4308019809C41008148 @default.
- W4308019809 hasConceptScore W4308019809C50644808 @default.
- W4308019809 hasConceptScore W4308019809C530470458 @default.
- W4308019809 hasConceptScore W4308019809C58471807 @default.
- W4308019809 hasConceptScore W4308019809C71924100 @default.
- W4308019809 hasConceptScore W4308019809C84525736 @default.
- W4308019809 hasConceptScore W4308019809C8642999 @default.
- W4308019809 hasIssue "1" @default.
- W4308019809 hasLocation W43080198091 @default.
- W4308019809 hasLocation W43080198092 @default.
- W4308019809 hasLocation W43080198093 @default.
- W4308019809 hasLocation W43080198094 @default.
- W4308019809 hasOpenAccess W4308019809 @default.
- W4308019809 hasPrimaryLocation W43080198091 @default.
- W4308019809 hasRelatedWork W1974336862 @default.
- W4308019809 hasRelatedWork W2953665647 @default.
- W4308019809 hasRelatedWork W2954882791 @default.
- W4308019809 hasRelatedWork W3014750173 @default.
- W4308019809 hasRelatedWork W3169687406 @default.
- W4308019809 hasRelatedWork W3192751261 @default.
- W4308019809 hasRelatedWork W3200811867 @default.