Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308020912> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4308020912 abstract "We describe the relative $K_0$-groups of orders in finite dimensional separable algebras over the fraction fields of Dedekind domains of characteristic zero in terms of the theory of reduced determinant functors introduced in [20]. We then use this approach to formulate, for each odd prime $p$, a main conjecture of non-commutative $p$-adic Iwasawa theory for $mathbb{G}_m$ over arbitrary number fields. This conjecture predicts a precise relation between a canonical Rubin-Stark non-commutative Euler system that we define and the compactly supported $p$-adic cohomology of $mathbb{Z}_p$ and simultaneously extends both the higher rank (commutative) main conjecture for $mathbb{G}_m$ studied by Kurihara and the present authors and the formalism of main conjectures in non-commutative Iwasawa theory due to Ritter and Weiss and to Coates, Fukaya, Kato, Sujatha and Venjakob. Our approach also suggests a precise conjectural `higher derivative formula' for the Rubin-Stark non-commutative Euler system that extends the classical Gross-Stark Conjecture to the setting of Galois extensions of arbitrary number fields. We present strong evidence in support of both of these conjectures in the setting of arbitrary Galois CM extensions of totally real fields. In addition, in the general case, we show that the conjectures can be combined to establish a new strategy for obtaining evidence in support of the equivariant Tamagawa Number Conjecture for $mathbb{G}_m$ over arbitrary Galois extensions." @default.
- W4308020912 created "2022-11-07" @default.
- W4308020912 creator A5030282891 @default.
- W4308020912 creator A5066661294 @default.
- W4308020912 date "2022-11-01" @default.
- W4308020912 modified "2023-09-25" @default.
- W4308020912 title "On non-commutative Iwasawa theory and derivatives of Euler systems" @default.
- W4308020912 doi "https://doi.org/10.48550/arxiv.2211.00276" @default.
- W4308020912 hasPublicationYear "2022" @default.
- W4308020912 type Work @default.
- W4308020912 citedByCount "0" @default.
- W4308020912 crossrefType "posted-content" @default.
- W4308020912 hasAuthorship W4308020912A5030282891 @default.
- W4308020912 hasAuthorship W4308020912A5066661294 @default.
- W4308020912 hasBestOaLocation W43080209121 @default.
- W4308020912 hasConcept C145899342 @default.
- W4308020912 hasConcept C156772000 @default.
- W4308020912 hasConcept C161491579 @default.
- W4308020912 hasConcept C183778304 @default.
- W4308020912 hasConcept C194909684 @default.
- W4308020912 hasConcept C202444582 @default.
- W4308020912 hasConcept C2780990831 @default.
- W4308020912 hasConcept C33923547 @default.
- W4308020912 hasConcept C67536143 @default.
- W4308020912 hasConcept C78606066 @default.
- W4308020912 hasConceptScore W4308020912C145899342 @default.
- W4308020912 hasConceptScore W4308020912C156772000 @default.
- W4308020912 hasConceptScore W4308020912C161491579 @default.
- W4308020912 hasConceptScore W4308020912C183778304 @default.
- W4308020912 hasConceptScore W4308020912C194909684 @default.
- W4308020912 hasConceptScore W4308020912C202444582 @default.
- W4308020912 hasConceptScore W4308020912C2780990831 @default.
- W4308020912 hasConceptScore W4308020912C33923547 @default.
- W4308020912 hasConceptScore W4308020912C67536143 @default.
- W4308020912 hasConceptScore W4308020912C78606066 @default.
- W4308020912 hasLocation W43080209121 @default.
- W4308020912 hasLocation W43080209122 @default.
- W4308020912 hasOpenAccess W4308020912 @default.
- W4308020912 hasPrimaryLocation W43080209121 @default.
- W4308020912 hasRelatedWork W1635538569 @default.
- W4308020912 hasRelatedWork W1758447916 @default.
- W4308020912 hasRelatedWork W1954846941 @default.
- W4308020912 hasRelatedWork W1986906844 @default.
- W4308020912 hasRelatedWork W1992729023 @default.
- W4308020912 hasRelatedWork W1996333803 @default.
- W4308020912 hasRelatedWork W2073994752 @default.
- W4308020912 hasRelatedWork W4308020912 @default.
- W4308020912 hasRelatedWork W4367694195 @default.
- W4308020912 hasRelatedWork W604617181 @default.
- W4308020912 isParatext "false" @default.
- W4308020912 isRetracted "false" @default.
- W4308020912 workType "article" @default.