Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308024646> ?p ?o ?g. }
- W4308024646 endingPage "9" @default.
- W4308024646 startingPage "1" @default.
- W4308024646 abstract "The sedimentation in coastlines, waterways, and reservoirs is an environmental problem that can be coped with sediment removal systems such as hydro-suction. In this study, the Mayfly Algorithm (MA) is applied to predict the maximum depth (hs) and diameter (Ds) of the formed scour hole attributed to the hydro-suction. Two machine learning methods including ANFIS and SVR were trained by the MA and Genetic Algorithm (GA) based on the measured data from this research as well as gathered data from pertinent resources. The most accurate methods in predicting hs and Ds were ANFIS-MA and SVR-MA, respectively. The results showed that the MA improved the efficiency of ANFIS and SVR about 23.69% and 13.56%, whereas the performance enhancement for GA were about 17.06% and 7.98%, respectively. Comparing the results between the GA and MA demonstrated that the developed MA-embedded integrative methods are more accurate than the GA-embedded methods." @default.
- W4308024646 created "2022-11-07" @default.
- W4308024646 creator A5043935498 @default.
- W4308024646 creator A5056858070 @default.
- W4308024646 date "2022-11-01" @default.
- W4308024646 modified "2023-10-16" @default.
- W4308024646 title "Application of mayfly algorithm for prediction of removed sediment in hydro-suction dredging systems" @default.
- W4308024646 cites W1775799718 @default.
- W4308024646 cites W1964357740 @default.
- W4308024646 cites W1970695256 @default.
- W4308024646 cites W1985479415 @default.
- W4308024646 cites W2019207321 @default.
- W4308024646 cites W2028871506 @default.
- W4308024646 cites W2046227236 @default.
- W4308024646 cites W2064665883 @default.
- W4308024646 cites W2075152220 @default.
- W4308024646 cites W2077967845 @default.
- W4308024646 cites W2092028340 @default.
- W4308024646 cites W2094810363 @default.
- W4308024646 cites W2106374630 @default.
- W4308024646 cites W2144758276 @default.
- W4308024646 cites W2147875346 @default.
- W4308024646 cites W2156909104 @default.
- W4308024646 cites W2206990974 @default.
- W4308024646 cites W2769731949 @default.
- W4308024646 cites W2808724894 @default.
- W4308024646 cites W2897402750 @default.
- W4308024646 cites W2901162987 @default.
- W4308024646 cites W2902755547 @default.
- W4308024646 cites W2914713848 @default.
- W4308024646 cites W2969089360 @default.
- W4308024646 cites W2996431882 @default.
- W4308024646 cites W3000480266 @default.
- W4308024646 cites W3013304730 @default.
- W4308024646 cites W3014189447 @default.
- W4308024646 cites W3029517552 @default.
- W4308024646 cites W3099056196 @default.
- W4308024646 cites W3124055270 @default.
- W4308024646 cites W3164500332 @default.
- W4308024646 cites W3168816560 @default.
- W4308024646 cites W3176636479 @default.
- W4308024646 cites W3191399622 @default.
- W4308024646 cites W3210402436 @default.
- W4308024646 cites W4200331322 @default.
- W4308024646 cites W4200425393 @default.
- W4308024646 cites W4214632878 @default.
- W4308024646 cites W4220884174 @default.
- W4308024646 cites W4250503569 @default.
- W4308024646 cites W595358173 @default.
- W4308024646 doi "https://doi.org/10.1080/17445302.2022.2140528" @default.
- W4308024646 hasPublicationYear "2022" @default.
- W4308024646 type Work @default.
- W4308024646 citedByCount "0" @default.
- W4308024646 crossrefType "journal-article" @default.
- W4308024646 hasAuthorship W4308024646A5043935498 @default.
- W4308024646 hasAuthorship W4308024646A5056858070 @default.
- W4308024646 hasConcept C111368507 @default.
- W4308024646 hasConcept C114793014 @default.
- W4308024646 hasConcept C119857082 @default.
- W4308024646 hasConcept C127313418 @default.
- W4308024646 hasConcept C127413603 @default.
- W4308024646 hasConcept C154945302 @default.
- W4308024646 hasConcept C186108316 @default.
- W4308024646 hasConcept C187320778 @default.
- W4308024646 hasConcept C18903297 @default.
- W4308024646 hasConcept C195975749 @default.
- W4308024646 hasConcept C23795335 @default.
- W4308024646 hasConcept C2778489309 @default.
- W4308024646 hasConcept C2781279111 @default.
- W4308024646 hasConcept C2816523 @default.
- W4308024646 hasConcept C29941650 @default.
- W4308024646 hasConcept C39432304 @default.
- W4308024646 hasConcept C41008148 @default.
- W4308024646 hasConcept C58166 @default.
- W4308024646 hasConcept C65589250 @default.
- W4308024646 hasConcept C78519656 @default.
- W4308024646 hasConcept C85323577 @default.
- W4308024646 hasConcept C86803240 @default.
- W4308024646 hasConcept C8880873 @default.
- W4308024646 hasConceptScore W4308024646C111368507 @default.
- W4308024646 hasConceptScore W4308024646C114793014 @default.
- W4308024646 hasConceptScore W4308024646C119857082 @default.
- W4308024646 hasConceptScore W4308024646C127313418 @default.
- W4308024646 hasConceptScore W4308024646C127413603 @default.
- W4308024646 hasConceptScore W4308024646C154945302 @default.
- W4308024646 hasConceptScore W4308024646C186108316 @default.
- W4308024646 hasConceptScore W4308024646C187320778 @default.
- W4308024646 hasConceptScore W4308024646C18903297 @default.
- W4308024646 hasConceptScore W4308024646C195975749 @default.
- W4308024646 hasConceptScore W4308024646C23795335 @default.
- W4308024646 hasConceptScore W4308024646C2778489309 @default.
- W4308024646 hasConceptScore W4308024646C2781279111 @default.
- W4308024646 hasConceptScore W4308024646C2816523 @default.
- W4308024646 hasConceptScore W4308024646C29941650 @default.
- W4308024646 hasConceptScore W4308024646C39432304 @default.
- W4308024646 hasConceptScore W4308024646C41008148 @default.
- W4308024646 hasConceptScore W4308024646C58166 @default.
- W4308024646 hasConceptScore W4308024646C65589250 @default.