Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308033101> ?p ?o ?g. }
- W4308033101 abstract "Agricultural greenhouse production has to require a stable and acceptable environment, it is therefore essential for future greenhouse production to obtain full and precisely internal dynamic environment parameters. Dynamic modeling based on machine learning methods, e.g., intelligent time series prediction modeling, is a popular and suitable way to solve the above issue. In this article, a systematic literature review on applying advanced time series models has been systematically conducted via a detailed analysis and evaluation of 61 pieces selected from 221 articles. The historical process of time series model application from the use of data and information strategies was first discussed. Subsequently, the accuracy and generalization of the model from the selection of model parameters and time steps, providing a new perspective for model development in this field, were compared and analyzed. Finally, the systematic review results demonstrate that, compared with traditional models, deep neural networks could increase data structure mining capabilities and overall information simulation capabilities through innovative and effective structures, thereby it could also broaden the selection range of environmental parameters for agricultural facilities and achieve environmental prediction end-to-end optimization via intelligent time series model based on deep neural networks." @default.
- W4308033101 created "2022-11-07" @default.
- W4308033101 creator A5003642180 @default.
- W4308033101 creator A5024818901 @default.
- W4308033101 creator A5043544285 @default.
- W4308033101 creator A5054594638 @default.
- W4308033101 creator A5063396689 @default.
- W4308033101 date "2022-10-01" @default.
- W4308033101 modified "2023-10-17" @default.
- W4308033101 title "A state of art review on time series forecasting with machine learning for environmental parameters in agricultural greenhouses" @default.
- W4308033101 cites W1539518933 @default.
- W4308033101 cites W1972181392 @default.
- W4308033101 cites W2011675169 @default.
- W4308033101 cites W2013766566 @default.
- W4308033101 cites W2022173539 @default.
- W4308033101 cites W2064675550 @default.
- W4308033101 cites W2075153278 @default.
- W4308033101 cites W2076691743 @default.
- W4308033101 cites W2085008954 @default.
- W4308033101 cites W2165183468 @default.
- W4308033101 cites W2276751812 @default.
- W4308033101 cites W2343829314 @default.
- W4308033101 cites W2404641003 @default.
- W4308033101 cites W2487967714 @default.
- W4308033101 cites W2517308042 @default.
- W4308033101 cites W2537179514 @default.
- W4308033101 cites W2592453717 @default.
- W4308033101 cites W2613328025 @default.
- W4308033101 cites W2618548677 @default.
- W4308033101 cites W2750787742 @default.
- W4308033101 cites W2755655268 @default.
- W4308033101 cites W2776741657 @default.
- W4308033101 cites W2788813591 @default.
- W4308033101 cites W2805142011 @default.
- W4308033101 cites W2809078865 @default.
- W4308033101 cites W2869473304 @default.
- W4308033101 cites W2884969581 @default.
- W4308033101 cites W2891323871 @default.
- W4308033101 cites W2900380956 @default.
- W4308033101 cites W2954516496 @default.
- W4308033101 cites W2969685114 @default.
- W4308033101 cites W2970069499 @default.
- W4308033101 cites W2986815055 @default.
- W4308033101 cites W2999301586 @default.
- W4308033101 cites W3001800752 @default.
- W4308033101 cites W3004337988 @default.
- W4308033101 cites W3015908511 @default.
- W4308033101 cites W3016311919 @default.
- W4308033101 cites W3033470910 @default.
- W4308033101 cites W3033737563 @default.
- W4308033101 cites W3043260233 @default.
- W4308033101 cites W3079760979 @default.
- W4308033101 cites W3085707493 @default.
- W4308033101 cites W3085770583 @default.
- W4308033101 cites W3092530991 @default.
- W4308033101 cites W3093509097 @default.
- W4308033101 cites W3095287332 @default.
- W4308033101 cites W3113873473 @default.
- W4308033101 cites W3121715033 @default.
- W4308033101 cites W3124474911 @default.
- W4308033101 cites W3127448976 @default.
- W4308033101 cites W3174658031 @default.
- W4308033101 cites W4255215111 @default.
- W4308033101 cites W588468042 @default.
- W4308033101 doi "https://doi.org/10.1016/j.inpa.2022.10.005" @default.
- W4308033101 hasPublicationYear "2022" @default.
- W4308033101 type Work @default.
- W4308033101 citedByCount "1" @default.
- W4308033101 countsByYear W43080331012023 @default.
- W4308033101 crossrefType "journal-article" @default.
- W4308033101 hasAuthorship W4308033101A5003642180 @default.
- W4308033101 hasAuthorship W4308033101A5024818901 @default.
- W4308033101 hasAuthorship W4308033101A5043544285 @default.
- W4308033101 hasAuthorship W4308033101A5054594638 @default.
- W4308033101 hasAuthorship W4308033101A5063396689 @default.
- W4308033101 hasBestOaLocation W43080331011 @default.
- W4308033101 hasConcept C111919701 @default.
- W4308033101 hasConcept C119857082 @default.
- W4308033101 hasConcept C124101348 @default.
- W4308033101 hasConcept C127413603 @default.
- W4308033101 hasConcept C134306372 @default.
- W4308033101 hasConcept C13736549 @default.
- W4308033101 hasConcept C139719470 @default.
- W4308033101 hasConcept C144027150 @default.
- W4308033101 hasConcept C151406439 @default.
- W4308033101 hasConcept C154945302 @default.
- W4308033101 hasConcept C162324750 @default.
- W4308033101 hasConcept C177148314 @default.
- W4308033101 hasConcept C202444582 @default.
- W4308033101 hasConcept C2778348673 @default.
- W4308033101 hasConcept C32198211 @default.
- W4308033101 hasConcept C33923547 @default.
- W4308033101 hasConcept C41008148 @default.
- W4308033101 hasConcept C50644808 @default.
- W4308033101 hasConcept C86803240 @default.
- W4308033101 hasConcept C9652623 @default.
- W4308033101 hasConcept C98045186 @default.
- W4308033101 hasConceptScore W4308033101C111919701 @default.
- W4308033101 hasConceptScore W4308033101C119857082 @default.
- W4308033101 hasConceptScore W4308033101C124101348 @default.