Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308036161> ?p ?o ?g. }
- W4308036161 endingPage "104304" @default.
- W4308036161 startingPage "104304" @default.
- W4308036161 abstract "Numerical simulations have been performed for a coaxial, twin-fluid nozzle to study the influence of the angle α between the central liquid jet and the annular airflow on the primary atomization process. A glycerol/water mixture with a high dynamic viscosity of 200 mPas is used and the gas-to-liquid ratio is 0.6. The simulations show good agreement with experiments for the breakup morphology. The liquid jet breaks up quickly and its core length L C decreases with α from 0° to 30°, which is attributable to a reinforced aerodynamic interaction. The flow velocity of the gas phase close to the liquid jet increases with α in this case, which is confirmed by corresponding PIV measurements. This is due to the formation of a high pressure zone at the base of the liquid jet, which results in a favorable pressure gradient in the bulk flow direction. However, further increase of α from 30° to 60° leads to a decreased gas flow velocity along the liquid jet and an increase of L C . The same behavior has been found for the integral specific kinetic energy k L in the liquid phase, which represents a measure for the momentum transfer between the gas and liquid phases. k L increases from α = 0 ∘ to 30° and it decreases again with higher α . Moreover, k L yields a similar distribution compared with the turbulent kinetic energy (TKE) of a typical turbulent flow in the spectral domain. This is attributed to the local concentration of TKE of the liquid phase in a small region around the tip of the liquid jet. The results reveal that, in addition to the common dimensionless operating parameters, the flow direction has an essential impact on the atomization process. According to the current work, the best atomization performance is achieved at an angle of α = 3 0 ∘ . The spectral correlation of k L with TKE of the gas flow may be used to assess the dynamics of the liquid phase. • Highly-resolved numerical simulations of coaxial, air-assisted primary atomization. • Gas velocity increases with air-to-liquid inclination angle α up to 30°and it decreases again with further increased α . • The same behavior is found for the liquid phase kinetic energy, and vice versa for the liquid jet breakup length. • An optimal air-to-liquid injection angle is shown to be in the range of 30° < α < 45°for best atomization performance. • A strong spectral correlation between turbulent kinetic energies in liquid and gas phases has been confirmed." @default.
- W4308036161 created "2022-11-07" @default.
- W4308036161 creator A5019933638 @default.
- W4308036161 creator A5021089664 @default.
- W4308036161 creator A5026597168 @default.
- W4308036161 creator A5030934739 @default.
- W4308036161 creator A5031487747 @default.
- W4308036161 creator A5050417730 @default.
- W4308036161 creator A5054012438 @default.
- W4308036161 creator A5063834488 @default.
- W4308036161 creator A5075743245 @default.
- W4308036161 creator A5087203701 @default.
- W4308036161 date "2023-01-01" @default.
- W4308036161 modified "2023-09-26" @default.
- W4308036161 title "Numerical simulations of air-assisted primary atomization at different air-to-liquid injection angles" @default.
- W4308036161 cites W2000130672 @default.
- W4308036161 cites W2005473012 @default.
- W4308036161 cites W2008763006 @default.
- W4308036161 cites W2009274572 @default.
- W4308036161 cites W2023248330 @default.
- W4308036161 cites W2043286642 @default.
- W4308036161 cites W2046912847 @default.
- W4308036161 cites W2052032224 @default.
- W4308036161 cites W2069166573 @default.
- W4308036161 cites W2079085601 @default.
- W4308036161 cites W2094893222 @default.
- W4308036161 cites W2096288579 @default.
- W4308036161 cites W2127695722 @default.
- W4308036161 cites W2142046692 @default.
- W4308036161 cites W2168323577 @default.
- W4308036161 cites W2170766167 @default.
- W4308036161 cites W2466444897 @default.
- W4308036161 cites W2520978755 @default.
- W4308036161 cites W2578765966 @default.
- W4308036161 cites W2584652507 @default.
- W4308036161 cites W2679075395 @default.
- W4308036161 cites W2999874949 @default.
- W4308036161 cites W3000737819 @default.
- W4308036161 cites W3018707965 @default.
- W4308036161 cites W3089118597 @default.
- W4308036161 cites W3096257878 @default.
- W4308036161 cites W3176379681 @default.
- W4308036161 cites W3180866957 @default.
- W4308036161 cites W3194823749 @default.
- W4308036161 cites W3197585439 @default.
- W4308036161 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2022.104304" @default.
- W4308036161 hasPublicationYear "2023" @default.
- W4308036161 type Work @default.
- W4308036161 citedByCount "2" @default.
- W4308036161 countsByYear W43080361612023 @default.
- W4308036161 crossrefType "journal-article" @default.
- W4308036161 hasAuthorship W4308036161A5019933638 @default.
- W4308036161 hasAuthorship W4308036161A5021089664 @default.
- W4308036161 hasAuthorship W4308036161A5026597168 @default.
- W4308036161 hasAuthorship W4308036161A5030934739 @default.
- W4308036161 hasAuthorship W4308036161A5031487747 @default.
- W4308036161 hasAuthorship W4308036161A5050417730 @default.
- W4308036161 hasAuthorship W4308036161A5054012438 @default.
- W4308036161 hasAuthorship W4308036161A5063834488 @default.
- W4308036161 hasAuthorship W4308036161A5075743245 @default.
- W4308036161 hasAuthorship W4308036161A5087203701 @default.
- W4308036161 hasBestOaLocation W43080361611 @default.
- W4308036161 hasConcept C119599485 @default.
- W4308036161 hasConcept C119947313 @default.
- W4308036161 hasConcept C121332964 @default.
- W4308036161 hasConcept C127413603 @default.
- W4308036161 hasConcept C135889238 @default.
- W4308036161 hasConcept C15476950 @default.
- W4308036161 hasConcept C192562407 @default.
- W4308036161 hasConcept C196558001 @default.
- W4308036161 hasConcept C2777871205 @default.
- W4308036161 hasConcept C38349280 @default.
- W4308036161 hasConcept C51221625 @default.
- W4308036161 hasConcept C56200935 @default.
- W4308036161 hasConcept C57879066 @default.
- W4308036161 hasConcept C74650414 @default.
- W4308036161 hasConcept C97355855 @default.
- W4308036161 hasConceptScore W4308036161C119599485 @default.
- W4308036161 hasConceptScore W4308036161C119947313 @default.
- W4308036161 hasConceptScore W4308036161C121332964 @default.
- W4308036161 hasConceptScore W4308036161C127413603 @default.
- W4308036161 hasConceptScore W4308036161C135889238 @default.
- W4308036161 hasConceptScore W4308036161C15476950 @default.
- W4308036161 hasConceptScore W4308036161C192562407 @default.
- W4308036161 hasConceptScore W4308036161C196558001 @default.
- W4308036161 hasConceptScore W4308036161C2777871205 @default.
- W4308036161 hasConceptScore W4308036161C38349280 @default.
- W4308036161 hasConceptScore W4308036161C51221625 @default.
- W4308036161 hasConceptScore W4308036161C56200935 @default.
- W4308036161 hasConceptScore W4308036161C57879066 @default.
- W4308036161 hasConceptScore W4308036161C74650414 @default.
- W4308036161 hasConceptScore W4308036161C97355855 @default.
- W4308036161 hasFunder F4320311048 @default.
- W4308036161 hasFunder F4320320875 @default.
- W4308036161 hasFunder F4320320876 @default.
- W4308036161 hasFunder F4320321114 @default.
- W4308036161 hasFunder F4320325698 @default.
- W4308036161 hasLocation W43080361611 @default.