Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308045246> ?p ?o ?g. }
- W4308045246 endingPage "114723" @default.
- W4308045246 startingPage "114723" @default.
- W4308045246 abstract "Ammonia nitrogen (NH3-N) is closely related to the occurrence of cyanobacterial blooms and destruction of surface water ecosystems, and thus it is of great significance to develop predictive models for NH3-N. However, traditional models cannot fully consider the complex nonlinear relationship between NH3-N and various relative environmental parameters. The long short-term memory (LSTM) neural network can overcome this limitation. A new hybrid model BC-MODWT-DA-LSTM was proposed based on LSTM combining with the dual-stage attention (DA) mechanism and boundary corrected maximal overlap discrete wavelet transform (BC-MODWT) data decomposition method. By introducing attention mechanism, LSTM could selectively focus on the input data. BC-MODWT could decompose the input data into sublayers to determine the main swings and trends of the input feature series. The BC-MODWT-DA-LSTM hybrid model was superior to other studied models with lower average prediction errors. It could maintain NASH Sutcliffe efficiency coefficient (NSE) values above 0.900 under the lead time up to 7 days, and the area under the receiver operating characteristic (ROC) curve could reach 0.992. The hybrid model also had higher prediction accuracies at the peak spots, indicating that it was capable of early warning when sudden high NH3-N pollution occurred. The high forecasting accuracy of the suggested hybrid method proved that further improving LSTM model without introducing more complex topologies was a promising water quality prediction method." @default.
- W4308045246 created "2022-11-07" @default.
- W4308045246 creator A5037192036 @default.
- W4308045246 creator A5075657128 @default.
- W4308045246 date "2023-01-01" @default.
- W4308045246 modified "2023-09-27" @default.
- W4308045246 title "Predicting ammonia nitrogen in surface water by a new attention-based deep learning hybrid model" @default.
- W4308045246 cites W2027747974 @default.
- W4308045246 cites W2029748544 @default.
- W4308045246 cites W2029888179 @default.
- W4308045246 cites W2032170121 @default.
- W4308045246 cites W2036092357 @default.
- W4308045246 cites W2057018326 @default.
- W4308045246 cites W2064675550 @default.
- W4308045246 cites W2081059972 @default.
- W4308045246 cites W2095614812 @default.
- W4308045246 cites W2107878631 @default.
- W4308045246 cites W2139086914 @default.
- W4308045246 cites W2149298154 @default.
- W4308045246 cites W2175514636 @default.
- W4308045246 cites W2763440627 @default.
- W4308045246 cites W2792277382 @default.
- W4308045246 cites W2794345023 @default.
- W4308045246 cites W2801349916 @default.
- W4308045246 cites W2803372149 @default.
- W4308045246 cites W2889740942 @default.
- W4308045246 cites W2892675915 @default.
- W4308045246 cites W2913323966 @default.
- W4308045246 cites W2914868446 @default.
- W4308045246 cites W2951404122 @default.
- W4308045246 cites W3005619092 @default.
- W4308045246 cites W3008408706 @default.
- W4308045246 cites W3010738077 @default.
- W4308045246 cites W3016208458 @default.
- W4308045246 cites W3022780561 @default.
- W4308045246 cites W3035348935 @default.
- W4308045246 cites W3040828009 @default.
- W4308045246 cites W3046781693 @default.
- W4308045246 cites W3084107721 @default.
- W4308045246 cites W3088138397 @default.
- W4308045246 cites W3174871970 @default.
- W4308045246 cites W3189604654 @default.
- W4308045246 cites W3190011592 @default.
- W4308045246 cites W3196345400 @default.
- W4308045246 cites W3197641978 @default.
- W4308045246 cites W3197822946 @default.
- W4308045246 doi "https://doi.org/10.1016/j.envres.2022.114723" @default.
- W4308045246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36336093" @default.
- W4308045246 hasPublicationYear "2023" @default.
- W4308045246 type Work @default.
- W4308045246 citedByCount "5" @default.
- W4308045246 countsByYear W43080452462023 @default.
- W4308045246 crossrefType "journal-article" @default.
- W4308045246 hasAuthorship W4308045246A5037192036 @default.
- W4308045246 hasAuthorship W4308045246A5075657128 @default.
- W4308045246 hasConcept C108583219 @default.
- W4308045246 hasConcept C11413529 @default.
- W4308045246 hasConcept C124952713 @default.
- W4308045246 hasConcept C138885662 @default.
- W4308045246 hasConcept C142362112 @default.
- W4308045246 hasConcept C153180895 @default.
- W4308045246 hasConcept C154945302 @default.
- W4308045246 hasConcept C196216189 @default.
- W4308045246 hasConcept C2776401178 @default.
- W4308045246 hasConcept C2780980858 @default.
- W4308045246 hasConcept C41008148 @default.
- W4308045246 hasConcept C41895202 @default.
- W4308045246 hasConcept C46286280 @default.
- W4308045246 hasConcept C47432892 @default.
- W4308045246 hasConcept C50644808 @default.
- W4308045246 hasConceptScore W4308045246C108583219 @default.
- W4308045246 hasConceptScore W4308045246C11413529 @default.
- W4308045246 hasConceptScore W4308045246C124952713 @default.
- W4308045246 hasConceptScore W4308045246C138885662 @default.
- W4308045246 hasConceptScore W4308045246C142362112 @default.
- W4308045246 hasConceptScore W4308045246C153180895 @default.
- W4308045246 hasConceptScore W4308045246C154945302 @default.
- W4308045246 hasConceptScore W4308045246C196216189 @default.
- W4308045246 hasConceptScore W4308045246C2776401178 @default.
- W4308045246 hasConceptScore W4308045246C2780980858 @default.
- W4308045246 hasConceptScore W4308045246C41008148 @default.
- W4308045246 hasConceptScore W4308045246C41895202 @default.
- W4308045246 hasConceptScore W4308045246C46286280 @default.
- W4308045246 hasConceptScore W4308045246C47432892 @default.
- W4308045246 hasConceptScore W4308045246C50644808 @default.
- W4308045246 hasFunder F4320321540 @default.
- W4308045246 hasFunder F4320335682 @default.
- W4308045246 hasLocation W43080452461 @default.
- W4308045246 hasLocation W43080452462 @default.
- W4308045246 hasOpenAccess W4308045246 @default.
- W4308045246 hasPrimaryLocation W43080452461 @default.
- W4308045246 hasRelatedWork W2185970706 @default.
- W4308045246 hasRelatedWork W2216531272 @default.
- W4308045246 hasRelatedWork W2349565792 @default.
- W4308045246 hasRelatedWork W2382607599 @default.
- W4308045246 hasRelatedWork W2541950815 @default.
- W4308045246 hasRelatedWork W2546942002 @default.
- W4308045246 hasRelatedWork W2738221750 @default.