Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308051199> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4308051199 abstract "The textit{method of semigroups} is a unifying, widely applicable, general technique to formulate and analyze fundamental aspects of fractional powers of operators $L$ and their regularity properties in related functional spaces. The approach was introduced by the author and Jos'e L.~Torrea in 2009 (arXiv:0910.2569v1). The aim of this chapter is to show how the method works in the particular case of the fractional Laplacian $L^s=(-Delta)^s$, $0<s<1$. The starting point is the semigroup formula for the fractional Laplacian. From here, the classical heat kernel permits us to obtain the pointwise formula for $(-Delta)^su(x)$. One of the key advantages is that our technique relies on the use of heat kernels, which allows for applications in settings where the Fourier transform is not the most suitable tool. In addition, it provides explicit constants that are key to prove, under minimal conditions on $u$, the validity of the pointwise limits $$lim_{sto1^-}(-Delta)^su(x)=-Delta u(x)quadhbox{and}quadlim_{sto0^+}(-Delta)^su(x)=u(x).$$ The formula for the solution to the Poisson problem $(-Delta)^su=f$ is found through the semigroup approach as the inverse of the fractional Laplacian $u(x)=(-Delta)^{-s}f(x)$ (fundamental solution). We then present the Caffarelli--Silvestre extension problem, whose explicit solution is given by the semigroup formulas that were first discovered by the author and Torrea. With the extension technique, an interior Harnack inequality and derivative estimates for fractional harmonic functions can be obtained. The classical Holder and Schauder estimates $$(-Delta)^{pm s}:C^alphato C^{alphamp 2s}$$ are proved with the method of semigroups in a rather quick, elegant way. The crucial point for this will be the characterization of Holder and Zygmund spaces with heat semigroups." @default.
- W4308051199 created "2022-11-07" @default.
- W4308051199 creator A5052692228 @default.
- W4308051199 date "2018-08-15" @default.
- W4308051199 modified "2023-09-27" @default.
- W4308051199 title "User's guide to the fractional Laplacian and the method of semigroups" @default.
- W4308051199 doi "https://doi.org/10.48550/arxiv.1808.05159" @default.
- W4308051199 hasPublicationYear "2018" @default.
- W4308051199 type Work @default.
- W4308051199 citedByCount "0" @default.
- W4308051199 crossrefType "posted-content" @default.
- W4308051199 hasAuthorship W4308051199A5052692228 @default.
- W4308051199 hasBestOaLocation W43080511991 @default.
- W4308051199 hasConcept C134306372 @default.
- W4308051199 hasConcept C165700671 @default.
- W4308051199 hasConcept C183212220 @default.
- W4308051199 hasConcept C199360897 @default.
- W4308051199 hasConcept C202444582 @default.
- W4308051199 hasConcept C207405024 @default.
- W4308051199 hasConcept C2775913539 @default.
- W4308051199 hasConcept C2777984123 @default.
- W4308051199 hasConcept C2778029271 @default.
- W4308051199 hasConcept C33923547 @default.
- W4308051199 hasConcept C41008148 @default.
- W4308051199 hasConcept C74193536 @default.
- W4308051199 hasConcept C8077415 @default.
- W4308051199 hasConcept C8464174 @default.
- W4308051199 hasConceptScore W4308051199C134306372 @default.
- W4308051199 hasConceptScore W4308051199C165700671 @default.
- W4308051199 hasConceptScore W4308051199C183212220 @default.
- W4308051199 hasConceptScore W4308051199C199360897 @default.
- W4308051199 hasConceptScore W4308051199C202444582 @default.
- W4308051199 hasConceptScore W4308051199C207405024 @default.
- W4308051199 hasConceptScore W4308051199C2775913539 @default.
- W4308051199 hasConceptScore W4308051199C2777984123 @default.
- W4308051199 hasConceptScore W4308051199C2778029271 @default.
- W4308051199 hasConceptScore W4308051199C33923547 @default.
- W4308051199 hasConceptScore W4308051199C41008148 @default.
- W4308051199 hasConceptScore W4308051199C74193536 @default.
- W4308051199 hasConceptScore W4308051199C8077415 @default.
- W4308051199 hasConceptScore W4308051199C8464174 @default.
- W4308051199 hasLocation W43080511991 @default.
- W4308051199 hasLocation W43080511992 @default.
- W4308051199 hasOpenAccess W4308051199 @default.
- W4308051199 hasPrimaryLocation W43080511991 @default.
- W4308051199 hasRelatedWork W1980126905 @default.
- W4308051199 hasRelatedWork W1994217179 @default.
- W4308051199 hasRelatedWork W2022927413 @default.
- W4308051199 hasRelatedWork W2887257705 @default.
- W4308051199 hasRelatedWork W2912687552 @default.
- W4308051199 hasRelatedWork W2950648698 @default.
- W4308051199 hasRelatedWork W4298012995 @default.
- W4308051199 hasRelatedWork W4298847490 @default.
- W4308051199 hasRelatedWork W4301492122 @default.
- W4308051199 hasRelatedWork W4308051199 @default.
- W4308051199 isParatext "false" @default.
- W4308051199 isRetracted "false" @default.
- W4308051199 workType "article" @default.