Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308052938> ?p ?o ?g. }
- W4308052938 endingPage "5374" @default.
- W4308052938 startingPage "5368" @default.
- W4308052938 abstract "Abstract Motivation Antimicrobial peptides (AMPs) have the potential to inhibit multiple types of pathogens and to heal infections. Computational strategies can assist in characterizing novel AMPs from proteome or collections of synthetic sequences and discovering their functional abilities toward different microbial targets without intensive labor. Results Here, we present a deep learning-based method for computer-aided novel AMP discovery that utilizes the transformer neural network architecture with knowledge from natural language processing to extract peptide sequence information. We implemented the method for two AMP-related tasks: the first is to discriminate AMPs from other peptides, and the second task is identifying AMPs functional activities related to seven different targets (gram-negative bacteria, gram-positive bacteria, fungi, viruses, cancer cells, parasites and mammalian cell inhibition), which is a multi-label problem. In addition, asymmetric loss was adopted to resolve the intrinsic imbalance of dataset, particularly for the multi-label scenarios. The evaluation showed that our proposed scheme achieves the best performance for the first task (96.85% balanced accuracy) and has a more unbiased prediction for the second task (79.83% balanced accuracy averaged across all functional activities) when compared with that of strategies without imbalanced learning or deep learning. Availability and implementation The source code and data of this study are available at https://github.com/BiOmicsLab/TransImbAMP. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W4308052938 created "2022-11-07" @default.
- W4308052938 creator A5005701381 @default.
- W4308052938 creator A5045675277 @default.
- W4308052938 creator A5070743854 @default.
- W4308052938 creator A5078222868 @default.
- W4308052938 creator A5080268249 @default.
- W4308052938 date "2022-11-03" @default.
- W4308052938 modified "2023-10-18" @default.
- W4308052938 title "Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities" @default.
- W4308052938 cites W1766594731 @default.
- W4308052938 cites W1967541074 @default.
- W4308052938 cites W1978444624 @default.
- W4308052938 cites W2010979687 @default.
- W4308052938 cites W2041942794 @default.
- W4308052938 cites W2047438216 @default.
- W4308052938 cites W2080614447 @default.
- W4308052938 cites W2081697244 @default.
- W4308052938 cites W2099153308 @default.
- W4308052938 cites W2131275757 @default.
- W4308052938 cites W2145957695 @default.
- W4308052938 cites W2148143831 @default.
- W4308052938 cites W2156125289 @default.
- W4308052938 cites W2511835277 @default.
- W4308052938 cites W2562261325 @default.
- W4308052938 cites W2588467130 @default.
- W4308052938 cites W2761599107 @default.
- W4308052938 cites W2791765498 @default.
- W4308052938 cites W2791848964 @default.
- W4308052938 cites W2792378492 @default.
- W4308052938 cites W2911964244 @default.
- W4308052938 cites W2956569764 @default.
- W4308052938 cites W2971227267 @default.
- W4308052938 cites W3048086963 @default.
- W4308052938 cites W3080137602 @default.
- W4308052938 cites W3095583226 @default.
- W4308052938 cites W3097405028 @default.
- W4308052938 cites W3106094498 @default.
- W4308052938 cites W3112376646 @default.
- W4308052938 cites W3158777740 @default.
- W4308052938 cites W3162422430 @default.
- W4308052938 cites W3164453494 @default.
- W4308052938 cites W3185903970 @default.
- W4308052938 cites W3186424845 @default.
- W4308052938 cites W3188372451 @default.
- W4308052938 cites W3198303770 @default.
- W4308052938 cites W3199352650 @default.
- W4308052938 cites W3216979156 @default.
- W4308052938 cites W4213072029 @default.
- W4308052938 doi "https://doi.org/10.1093/bioinformatics/btac711" @default.
- W4308052938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36326438" @default.
- W4308052938 hasPublicationYear "2022" @default.
- W4308052938 type Work @default.
- W4308052938 citedByCount "4" @default.
- W4308052938 countsByYear W43080529382023 @default.
- W4308052938 crossrefType "journal-article" @default.
- W4308052938 hasAuthorship W4308052938A5005701381 @default.
- W4308052938 hasAuthorship W4308052938A5045675277 @default.
- W4308052938 hasAuthorship W4308052938A5070743854 @default.
- W4308052938 hasAuthorship W4308052938A5078222868 @default.
- W4308052938 hasAuthorship W4308052938A5080268249 @default.
- W4308052938 hasBestOaLocation W43080529381 @default.
- W4308052938 hasConcept C104397665 @default.
- W4308052938 hasConcept C108583219 @default.
- W4308052938 hasConcept C111919701 @default.
- W4308052938 hasConcept C119857082 @default.
- W4308052938 hasConcept C121332964 @default.
- W4308052938 hasConcept C154945302 @default.
- W4308052938 hasConcept C162324750 @default.
- W4308052938 hasConcept C165801399 @default.
- W4308052938 hasConcept C187736073 @default.
- W4308052938 hasConcept C2779281246 @default.
- W4308052938 hasConcept C2780451532 @default.
- W4308052938 hasConcept C41008148 @default.
- W4308052938 hasConcept C43126263 @default.
- W4308052938 hasConcept C50644808 @default.
- W4308052938 hasConcept C540938839 @default.
- W4308052938 hasConcept C55493867 @default.
- W4308052938 hasConcept C60644358 @default.
- W4308052938 hasConcept C62520636 @default.
- W4308052938 hasConcept C66322947 @default.
- W4308052938 hasConcept C70721500 @default.
- W4308052938 hasConcept C86803240 @default.
- W4308052938 hasConceptScore W4308052938C104397665 @default.
- W4308052938 hasConceptScore W4308052938C108583219 @default.
- W4308052938 hasConceptScore W4308052938C111919701 @default.
- W4308052938 hasConceptScore W4308052938C119857082 @default.
- W4308052938 hasConceptScore W4308052938C121332964 @default.
- W4308052938 hasConceptScore W4308052938C154945302 @default.
- W4308052938 hasConceptScore W4308052938C162324750 @default.
- W4308052938 hasConceptScore W4308052938C165801399 @default.
- W4308052938 hasConceptScore W4308052938C187736073 @default.
- W4308052938 hasConceptScore W4308052938C2779281246 @default.
- W4308052938 hasConceptScore W4308052938C2780451532 @default.
- W4308052938 hasConceptScore W4308052938C41008148 @default.
- W4308052938 hasConceptScore W4308052938C43126263 @default.
- W4308052938 hasConceptScore W4308052938C50644808 @default.
- W4308052938 hasConceptScore W4308052938C540938839 @default.