Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308061697> ?p ?o ?g. }
- W4308061697 abstract "Organisms need sufficient intracellular iron to maintain biological processes. However, cells can be damaged by excessive iron-induced oxidation stress. Therefore, iron homeostasis must be strictly regulated. In general, bacteria have evolved complex mechanisms to maintain iron homeostasis. In this study, we showed that Pseudoalteromonas sp. R3 has four sets of iron uptake systems. Among these, the siderophore pyoverdine-dependent iron uptake system and the ferrous iron transporter Feo system are more important for iron uptake and prodiginine biosynthesis. Stringent starvation protein SspA positively controls iron uptake and iron-dependent prodiginine biosynthesis by regulating the expression of all iron uptake systems. In turn, the expression of SspA can be induced and repressed by extracellular iron deficiency and excess, respectively. Interestingly, extracytoplasmic function sigma factor PvdS also regulates iron uptake and prodiginine production and responds to extracellular iron levels, exhibiting a similar phenomenon as SspA. Notably, not only do SspA and PvdS function independently, but they can also compensate for each other, and their expression can be affected by the other. All of these findings demonstrate that SspA and PvdS coordinate iron homeostasis and prodiginine biosynthesis in strain R3. More importantly, our results also showed that SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 have similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that coordination between SspA and PvdS on iron homeostasis could be conserved in typical Gram-negative bacteria. Since master regulation of iron homeostasis is extremely important for cell survival, this cross talk between SspA and PvdS may be environmentally significant. IMPORTANCE Both deficiency and excess of intracellular iron can be harmful, and thus, the iron homeostasis needs to be tightly regulated in organisms. At present, the ferric uptake regulator (Fur) is the best-characterized regulator involved in bacterial iron homeostasis, while other regulators of iron homeostasis remain to be further explored. Here, we demonstrated that the stringent starvation protein SspA and the extracytoplasmic function sigma factor PvdS coordinate iron uptake and iron-dependent prodiginine biosynthesis in Pseudoalteromonas sp. R3. These two regulators work independently, but their functions can compensate for the other and their expression can be affected by the other. Moreover, their expression can be activated and repressed by extracellular iron deficiency and excess, respectively. Notably, SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 exhibit similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that this novel fine-tuned mode of iron homeostasis could be conserved in typical Gram-negative bacteria." @default.
- W4308061697 created "2022-11-07" @default.
- W4308061697 creator A5005400023 @default.
- W4308061697 creator A5026204677 @default.
- W4308061697 creator A5040457316 @default.
- W4308061697 creator A5046145976 @default.
- W4308061697 creator A5050231301 @default.
- W4308061697 creator A5057027853 @default.
- W4308061697 creator A5061566512 @default.
- W4308061697 creator A5061748903 @default.
- W4308061697 creator A5073349861 @default.
- W4308061697 creator A5089255391 @default.
- W4308061697 date "2022-11-22" @default.
- W4308061697 modified "2023-09-27" @default.
- W4308061697 title "Stringent Starvation Protein SspA and Iron Starvation Sigma Factor PvdS Coordinately Regulate Iron Uptake and Prodiginine Biosynthesis in <i>Pseudoalteromonas</i> sp. R3" @default.
- W4308061697 cites W1519796229 @default.
- W4308061697 cites W1543001103 @default.
- W4308061697 cites W1707576348 @default.
- W4308061697 cites W1935018540 @default.
- W4308061697 cites W1993344374 @default.
- W4308061697 cites W1994739190 @default.
- W4308061697 cites W1999763488 @default.
- W4308061697 cites W2005361874 @default.
- W4308061697 cites W2010891932 @default.
- W4308061697 cites W2013740990 @default.
- W4308061697 cites W2014723793 @default.
- W4308061697 cites W2017804401 @default.
- W4308061697 cites W2019176012 @default.
- W4308061697 cites W2022729414 @default.
- W4308061697 cites W2023112316 @default.
- W4308061697 cites W2026856098 @default.
- W4308061697 cites W2031931245 @default.
- W4308061697 cites W2035318758 @default.
- W4308061697 cites W2035816996 @default.
- W4308061697 cites W2044678473 @default.
- W4308061697 cites W2044769290 @default.
- W4308061697 cites W2049427340 @default.
- W4308061697 cites W2060967458 @default.
- W4308061697 cites W2083535633 @default.
- W4308061697 cites W2083751896 @default.
- W4308061697 cites W2085029337 @default.
- W4308061697 cites W2088167775 @default.
- W4308061697 cites W2088799100 @default.
- W4308061697 cites W2094020871 @default.
- W4308061697 cites W2108192886 @default.
- W4308061697 cites W2109830492 @default.
- W4308061697 cites W2111203830 @default.
- W4308061697 cites W2111362015 @default.
- W4308061697 cites W2112077172 @default.
- W4308061697 cites W2112309782 @default.
- W4308061697 cites W2114570899 @default.
- W4308061697 cites W2124383202 @default.
- W4308061697 cites W2129365470 @default.
- W4308061697 cites W2129681136 @default.
- W4308061697 cites W2129714441 @default.
- W4308061697 cites W2133105401 @default.
- W4308061697 cites W2140244034 @default.
- W4308061697 cites W2141397466 @default.
- W4308061697 cites W2143745033 @default.
- W4308061697 cites W2148750992 @default.
- W4308061697 cites W2166005059 @default.
- W4308061697 cites W2228380367 @default.
- W4308061697 cites W2281675566 @default.
- W4308061697 cites W2532852614 @default.
- W4308061697 cites W2554475582 @default.
- W4308061697 cites W2577032185 @default.
- W4308061697 cites W2762209473 @default.
- W4308061697 cites W2764058868 @default.
- W4308061697 cites W2961007332 @default.
- W4308061697 cites W3000479037 @default.
- W4308061697 cites W3008226400 @default.
- W4308061697 cites W3058247920 @default.
- W4308061697 cites W3091235611 @default.
- W4308061697 cites W3097497247 @default.
- W4308061697 cites W3112586471 @default.
- W4308061697 cites W3121333977 @default.
- W4308061697 cites W3199523274 @default.
- W4308061697 cites W4200287015 @default.
- W4308061697 cites W4247121376 @default.
- W4308061697 doi "https://doi.org/10.1128/aem.01164-22" @default.
- W4308061697 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36326244" @default.
- W4308061697 hasPublicationYear "2022" @default.
- W4308061697 type Work @default.
- W4308061697 citedByCount "0" @default.
- W4308061697 crossrefType "journal-article" @default.
- W4308061697 hasAuthorship W4308061697A5005400023 @default.
- W4308061697 hasAuthorship W4308061697A5026204677 @default.
- W4308061697 hasAuthorship W4308061697A5040457316 @default.
- W4308061697 hasAuthorship W4308061697A5046145976 @default.
- W4308061697 hasAuthorship W4308061697A5050231301 @default.
- W4308061697 hasAuthorship W4308061697A5057027853 @default.
- W4308061697 hasAuthorship W4308061697A5061566512 @default.
- W4308061697 hasAuthorship W4308061697A5061748903 @default.
- W4308061697 hasAuthorship W4308061697A5073349861 @default.
- W4308061697 hasAuthorship W4308061697A5089255391 @default.
- W4308061697 hasBestOaLocation W43080616972 @default.
- W4308061697 hasConcept C104317684 @default.
- W4308061697 hasConcept C108319773 @default.
- W4308061697 hasConcept C178790620 @default.
- W4308061697 hasConcept C185592680 @default.