Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308086139> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4308086139 abstract "The competition between sellers of e-commerce in Indonesia are getting more intense. One of the ways for the sellers to stay competing in the industry is by managing their product inventory through demand prediction. A lot of research related to demand prediction had been conducted. On those research, preprocessing techniques were always implemented [16] [26] [33], but there hasn’t been a statement or a main guide related to the effect of preprocessing techniques on ecommerce demand prediction, like the research that was conducted on 2022 for steel industry. In this paper, multiple scenarios will be conducted to see the effects of preprocessing techniques on stacked generalization and stand-alone method using MLP (Multi Layer Perceptron) and XGBoost (Xtreme Gradient Boosting). It is found that data scaling can increase the performance of stacked generalization with MLP on level 1. The training time will also be faster if there is a significant improvement from highly skewed to normal distribution data. With feature interaction constraint, the training time of stacked generalization and stand-alone method can become faster with the same or better prediction performance, if the constraint is in accordance with the problem. Stacked generalization, especially with XGBoost on level 1, can result in a better prediction than stand-alone MLP with hyperparameter tuning and data scaling. If the data doesn’t have a high skewness, stacked generalization method can minimalize the error made by unsuitable parameter in stand-alone XGBoost." @default.
- W4308086139 created "2022-11-08" @default.
- W4308086139 creator A5003554946 @default.
- W4308086139 creator A5059786637 @default.
- W4308086139 date "2022-09-28" @default.
- W4308086139 modified "2023-09-27" @default.
- W4308086139 title "The Effect of Preprocessing Techniques on Stacked Generalization and Stand-Alone Method for E-commerce Demand Prediction" @default.
- W4308086139 cites W1594588104 @default.
- W4308086139 cites W1996234057 @default.
- W4308086139 cites W2009927598 @default.
- W4308086139 cites W2020549708 @default.
- W4308086139 cites W2057160778 @default.
- W4308086139 cites W2099386923 @default.
- W4308086139 cites W2122825543 @default.
- W4308086139 cites W2135046866 @default.
- W4308086139 cites W2240632480 @default.
- W4308086139 cites W2295797531 @default.
- W4308086139 cites W2884571067 @default.
- W4308086139 cites W2998704331 @default.
- W4308086139 cites W3044719873 @default.
- W4308086139 cites W3135570940 @default.
- W4308086139 cites W3182706339 @default.
- W4308086139 cites W4214732065 @default.
- W4308086139 doi "https://doi.org/10.1109/icaicta56449.2022.9932926" @default.
- W4308086139 hasPublicationYear "2022" @default.
- W4308086139 type Work @default.
- W4308086139 citedByCount "0" @default.
- W4308086139 crossrefType "proceedings-article" @default.
- W4308086139 hasAuthorship W4308086139A5003554946 @default.
- W4308086139 hasAuthorship W4308086139A5059786637 @default.
- W4308086139 hasConcept C10551718 @default.
- W4308086139 hasConcept C105795698 @default.
- W4308086139 hasConcept C119857082 @default.
- W4308086139 hasConcept C122342681 @default.
- W4308086139 hasConcept C124101348 @default.
- W4308086139 hasConcept C134306372 @default.
- W4308086139 hasConcept C154945302 @default.
- W4308086139 hasConcept C177148314 @default.
- W4308086139 hasConcept C2524010 @default.
- W4308086139 hasConcept C2776036281 @default.
- W4308086139 hasConcept C33923547 @default.
- W4308086139 hasConcept C34736171 @default.
- W4308086139 hasConcept C41008148 @default.
- W4308086139 hasConcept C46686674 @default.
- W4308086139 hasConcept C50644808 @default.
- W4308086139 hasConcept C60908668 @default.
- W4308086139 hasConcept C8642999 @default.
- W4308086139 hasConceptScore W4308086139C10551718 @default.
- W4308086139 hasConceptScore W4308086139C105795698 @default.
- W4308086139 hasConceptScore W4308086139C119857082 @default.
- W4308086139 hasConceptScore W4308086139C122342681 @default.
- W4308086139 hasConceptScore W4308086139C124101348 @default.
- W4308086139 hasConceptScore W4308086139C134306372 @default.
- W4308086139 hasConceptScore W4308086139C154945302 @default.
- W4308086139 hasConceptScore W4308086139C177148314 @default.
- W4308086139 hasConceptScore W4308086139C2524010 @default.
- W4308086139 hasConceptScore W4308086139C2776036281 @default.
- W4308086139 hasConceptScore W4308086139C33923547 @default.
- W4308086139 hasConceptScore W4308086139C34736171 @default.
- W4308086139 hasConceptScore W4308086139C41008148 @default.
- W4308086139 hasConceptScore W4308086139C46686674 @default.
- W4308086139 hasConceptScore W4308086139C50644808 @default.
- W4308086139 hasConceptScore W4308086139C60908668 @default.
- W4308086139 hasConceptScore W4308086139C8642999 @default.
- W4308086139 hasLocation W43080861391 @default.
- W4308086139 hasOpenAccess W4308086139 @default.
- W4308086139 hasPrimaryLocation W43080861391 @default.
- W4308086139 hasRelatedWork W2126957654 @default.
- W4308086139 hasRelatedWork W2783038087 @default.
- W4308086139 hasRelatedWork W2889453578 @default.
- W4308086139 hasRelatedWork W2897510300 @default.
- W4308086139 hasRelatedWork W3159988495 @default.
- W4308086139 hasRelatedWork W4280535922 @default.
- W4308086139 hasRelatedWork W4288057626 @default.
- W4308086139 hasRelatedWork W4304128395 @default.
- W4308086139 hasRelatedWork W4308086139 @default.
- W4308086139 hasRelatedWork W4375930479 @default.
- W4308086139 isParatext "false" @default.
- W4308086139 isRetracted "false" @default.
- W4308086139 workType "article" @default.