Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308088897> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4308088897 abstract "E-learning-based teaching methodologies are increasing now-a-days and also, the online classes are considered as highly popular that ensures the virtual platform for online education from anywhere in the world. The social networks are widely distributed that generates different opinions on various perspectives of life through the messages on the web. This textural information is highly sourced with the data for performing the sentiment analysis and opinion mining that is expressed through the text. This text provides the feelings of the students with the statements that show agreement or disagreement in the comment sections to reveal the negative or positive feelings of the students towards the learning. The major goal of this paper is to design of new sentiment analysis model for e-learning platform with the help of natural language processing techniques. Initially, the standard text data regarding e-learning platform with user reviews are gathered from benchmark resources. The gathered data is forwarded to pre-processing technique, where the unnecessary content is avoided for maximizing the performance of sentiment analysis. Further, word to vector conversion is carried out using glove embedding scheme for getting the relevant data for sentiment analysis. Further, the sentiment classification is carried out by Convolutional Neural Networks (CNN) with Gated Recurrent Unit (GRU). Finally, the sentiments are analyzed through hybrid deep learning in the field of e-learning. The investigation reveals promising results in sentiment analysis tasks." @default.
- W4308088897 created "2022-11-08" @default.
- W4308088897 creator A5032152307 @default.
- W4308088897 creator A5048121176 @default.
- W4308088897 creator A5074389581 @default.
- W4308088897 date "2022-09-22" @default.
- W4308088897 modified "2023-10-11" @default.
- W4308088897 title "A Hybrid Deep Learning Technique for Sentiment Analysis in E-Learning Platform with Natural Language Processing" @default.
- W4308088897 doi "https://doi.org/10.23919/softcom55329.2022.9911232" @default.
- W4308088897 hasPublicationYear "2022" @default.
- W4308088897 type Work @default.
- W4308088897 citedByCount "1" @default.
- W4308088897 countsByYear W43080888972022 @default.
- W4308088897 crossrefType "proceedings-article" @default.
- W4308088897 hasAuthorship W4308088897A5032152307 @default.
- W4308088897 hasAuthorship W4308088897A5048121176 @default.
- W4308088897 hasAuthorship W4308088897A5074389581 @default.
- W4308088897 hasConcept C108583219 @default.
- W4308088897 hasConcept C119857082 @default.
- W4308088897 hasConcept C13280743 @default.
- W4308088897 hasConcept C138885662 @default.
- W4308088897 hasConcept C154945302 @default.
- W4308088897 hasConcept C185798385 @default.
- W4308088897 hasConcept C202444582 @default.
- W4308088897 hasConcept C204321447 @default.
- W4308088897 hasConcept C205649164 @default.
- W4308088897 hasConcept C2777462759 @default.
- W4308088897 hasConcept C33923547 @default.
- W4308088897 hasConcept C41008148 @default.
- W4308088897 hasConcept C41608201 @default.
- W4308088897 hasConcept C41895202 @default.
- W4308088897 hasConcept C66402592 @default.
- W4308088897 hasConcept C81363708 @default.
- W4308088897 hasConcept C90805587 @default.
- W4308088897 hasConcept C9652623 @default.
- W4308088897 hasConceptScore W4308088897C108583219 @default.
- W4308088897 hasConceptScore W4308088897C119857082 @default.
- W4308088897 hasConceptScore W4308088897C13280743 @default.
- W4308088897 hasConceptScore W4308088897C138885662 @default.
- W4308088897 hasConceptScore W4308088897C154945302 @default.
- W4308088897 hasConceptScore W4308088897C185798385 @default.
- W4308088897 hasConceptScore W4308088897C202444582 @default.
- W4308088897 hasConceptScore W4308088897C204321447 @default.
- W4308088897 hasConceptScore W4308088897C205649164 @default.
- W4308088897 hasConceptScore W4308088897C2777462759 @default.
- W4308088897 hasConceptScore W4308088897C33923547 @default.
- W4308088897 hasConceptScore W4308088897C41008148 @default.
- W4308088897 hasConceptScore W4308088897C41608201 @default.
- W4308088897 hasConceptScore W4308088897C41895202 @default.
- W4308088897 hasConceptScore W4308088897C66402592 @default.
- W4308088897 hasConceptScore W4308088897C81363708 @default.
- W4308088897 hasConceptScore W4308088897C90805587 @default.
- W4308088897 hasConceptScore W4308088897C9652623 @default.
- W4308088897 hasLocation W43080888971 @default.
- W4308088897 hasOpenAccess W4308088897 @default.
- W4308088897 hasPrimaryLocation W43080888971 @default.
- W4308088897 hasRelatedWork W2771357047 @default.
- W4308088897 hasRelatedWork W2911655849 @default.
- W4308088897 hasRelatedWork W2941947626 @default.
- W4308088897 hasRelatedWork W2997097677 @default.
- W4308088897 hasRelatedWork W3186997021 @default.
- W4308088897 hasRelatedWork W3216571906 @default.
- W4308088897 hasRelatedWork W4200618314 @default.
- W4308088897 hasRelatedWork W4230884544 @default.
- W4308088897 hasRelatedWork W4286432911 @default.
- W4308088897 hasRelatedWork W4308088897 @default.
- W4308088897 isParatext "false" @default.
- W4308088897 isRetracted "false" @default.
- W4308088897 workType "article" @default.