Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308095361> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4308095361 abstract "Designing a battery management system requires knowing the battery’s remaining useful life (RUL). The Deep Learning Neural Network (DLNN) algorithm was optimized in this study utilizing evolutionary algorithms to forecast the RUL batteries. Using a Genetic Algorithm (GA), the most crucial features from the raw dataset were identified. After that, a GADLNN hybrid model was created to choose the DLNN model’s ideal network algorithm, hidden neuron activation function, hidden layer count, and neuron count in each hidden layer. Specifically, NASA provided a dataset related to lithium-ion battery cycle life. For the model development, data validation, and testing phases, the dataset was split into a training set, validation set, and testing set. Several quality assessment criteria were employed to measure the effectiveness of the machine learning (ML) algorithms, such as the Coefficient of Determination (R2), Index of Agreement (IA), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). The hybrid GA-DLNN model demonstrated the capacity to identify the most advantageous set of parameters for the prediction procedure. The outcomes demonstrated that, in comparison to results obtained using all input variables, the performance of the hybrid model employing only the most crucial features gave the maximum accuracy. Using 11-input GA-DLNN: R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> =0.985,MAE=3.806, RMSE =5.596, IA=0.996. Using 21-input GA-DLNN: R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> =0.987, MAE=3.314, RMSE =5.273, IA=0.997." @default.
- W4308095361 created "2022-11-08" @default.
- W4308095361 creator A5037960928 @default.
- W4308095361 creator A5050832703 @default.
- W4308095361 creator A5068485094 @default.
- W4308095361 creator A5091721223 @default.
- W4308095361 date "2022-09-14" @default.
- W4308095361 modified "2023-09-30" @default.
- W4308095361 title "Development of Remaining Useful Life (RUL) Prediction of Lithium-ion Battery Using Genetic Algorithm-Deep Learning Neural Network (GADNN) Hybrid Model" @default.
- W4308095361 doi "https://doi.org/10.1109/icevt55516.2022.9924776" @default.
- W4308095361 hasPublicationYear "2022" @default.
- W4308095361 type Work @default.
- W4308095361 citedByCount "1" @default.
- W4308095361 countsByYear W43080953612023 @default.
- W4308095361 crossrefType "proceedings-article" @default.
- W4308095361 hasAuthorship W4308095361A5037960928 @default.
- W4308095361 hasAuthorship W4308095361A5050832703 @default.
- W4308095361 hasAuthorship W4308095361A5068485094 @default.
- W4308095361 hasAuthorship W4308095361A5091721223 @default.
- W4308095361 hasConcept C105795698 @default.
- W4308095361 hasConcept C11413529 @default.
- W4308095361 hasConcept C119857082 @default.
- W4308095361 hasConcept C121332964 @default.
- W4308095361 hasConcept C139945424 @default.
- W4308095361 hasConcept C154945302 @default.
- W4308095361 hasConcept C163258240 @default.
- W4308095361 hasConcept C177264268 @default.
- W4308095361 hasConcept C199360897 @default.
- W4308095361 hasConcept C33923547 @default.
- W4308095361 hasConcept C41008148 @default.
- W4308095361 hasConcept C50644808 @default.
- W4308095361 hasConcept C555008776 @default.
- W4308095361 hasConcept C62520636 @default.
- W4308095361 hasConcept C8880873 @default.
- W4308095361 hasConceptScore W4308095361C105795698 @default.
- W4308095361 hasConceptScore W4308095361C11413529 @default.
- W4308095361 hasConceptScore W4308095361C119857082 @default.
- W4308095361 hasConceptScore W4308095361C121332964 @default.
- W4308095361 hasConceptScore W4308095361C139945424 @default.
- W4308095361 hasConceptScore W4308095361C154945302 @default.
- W4308095361 hasConceptScore W4308095361C163258240 @default.
- W4308095361 hasConceptScore W4308095361C177264268 @default.
- W4308095361 hasConceptScore W4308095361C199360897 @default.
- W4308095361 hasConceptScore W4308095361C33923547 @default.
- W4308095361 hasConceptScore W4308095361C41008148 @default.
- W4308095361 hasConceptScore W4308095361C50644808 @default.
- W4308095361 hasConceptScore W4308095361C555008776 @default.
- W4308095361 hasConceptScore W4308095361C62520636 @default.
- W4308095361 hasConceptScore W4308095361C8880873 @default.
- W4308095361 hasLocation W43080953611 @default.
- W4308095361 hasOpenAccess W4308095361 @default.
- W4308095361 hasPrimaryLocation W43080953611 @default.
- W4308095361 hasRelatedWork W2356957943 @default.
- W4308095361 hasRelatedWork W2359549665 @default.
- W4308095361 hasRelatedWork W2382761789 @default.
- W4308095361 hasRelatedWork W2386058197 @default.
- W4308095361 hasRelatedWork W2392110728 @default.
- W4308095361 hasRelatedWork W2808471159 @default.
- W4308095361 hasRelatedWork W2995227436 @default.
- W4308095361 hasRelatedWork W3195272954 @default.
- W4308095361 hasRelatedWork W4281693556 @default.
- W4308095361 hasRelatedWork W1629725936 @default.
- W4308095361 isParatext "false" @default.
- W4308095361 isRetracted "false" @default.
- W4308095361 workType "article" @default.