Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308100537> ?p ?o ?g. }
- W4308100537 endingPage "107606" @default.
- W4308100537 startingPage "107606" @default.
- W4308100537 abstract "Surface ozone (O3), one of the harmful air pollutants, generated significantly negative effects on human health and plants. Existing O3 datasets with coarse spatiotemporal resolution and limited coverage, and the uncertainties of O3 influential factors seriously restrain related epidemiology and air pollution studies. To tackle above issues, we proposed a novel scheme to estimate daily O3 concentrations on a fine grid scale (1 km × 1 km) from 2018 to 2020 across China based on machine learning methods using hourly observed ground-level pollutant concentrations data, meteorological data, satellite data, and auxiliary data including digital elevation model (DEM), land use data (LUD), normalized difference vegetation index (NDVI), population (POP), and nighttime light images (NTL), and to identify the difference of influential factors of O3 on diverse urbanization and topography conditions. Some findings were achieved. The correlation coefficients (R2) between O3 concentrations and surface net solar radiation (SNSR), boundary layer height (BLH), 2 m temperature (T2M), 10 m v-component (MVW), and NDVI were 0.80, 0.40, 0.35, 0.30, and 0.20, respectively. The random forest (RF) demonstrated the highest validation R2 (0.86) and lowest validation RMSE (13.74 μg/m3) in estimating O3 concentrations, followed by support vector machine (SVM) (R2 = 0.75, RMSE = 18.39 μg/m3), backpropagation neural network (BP) (R2 = 0.74, RMSE = 19.26 μg/m3), and multiple linear regression (MLR) (R2 = 0.52, RMSE = 25.99 μg/m3). Our China High-Resolution O3 Dataset (CHROD) exhibited an acceptable accuracy at different spatial-temporal scales. Additionally, O3 concentrations showed decreasing trend and represented obviously spatiotemporal heterogeneity across China from 2018 to 2020. Overall, O3 was mainly affected by human activities in higher urbanization regions, while O3 was mainly controlled by meteorological factors, vegetation coverage, and elevation in lower urbanization regions. The scheme of this study is useful and valuable in understanding the mechanism of O3 formation and improving the quality of the O3 dataset." @default.
- W4308100537 created "2022-11-08" @default.
- W4308100537 creator A5003642180 @default.
- W4308100537 creator A5022388376 @default.
- W4308100537 creator A5038947891 @default.
- W4308100537 creator A5056620127 @default.
- W4308100537 creator A5060529878 @default.
- W4308100537 creator A5068528886 @default.
- W4308100537 creator A5070830113 @default.
- W4308100537 date "2022-12-01" @default.
- W4308100537 modified "2023-10-17" @default.
- W4308100537 title "Study on the spatiotemporal dynamic of ground-level ozone concentrations on multiple scales across China during the blue sky protection campaign" @default.
- W4308100537 cites W2036583706 @default.
- W4308100537 cites W2585254554 @default.
- W4308100537 cites W2754901818 @default.
- W4308100537 cites W2759361395 @default.
- W4308100537 cites W2767085346 @default.
- W4308100537 cites W2802301768 @default.
- W4308100537 cites W2890660608 @default.
- W4308100537 cites W2892783553 @default.
- W4308100537 cites W2913019546 @default.
- W4308100537 cites W2919820063 @default.
- W4308100537 cites W2930601199 @default.
- W4308100537 cites W2942847786 @default.
- W4308100537 cites W2952935477 @default.
- W4308100537 cites W2954311017 @default.
- W4308100537 cites W2971667586 @default.
- W4308100537 cites W2975878129 @default.
- W4308100537 cites W2976028621 @default.
- W4308100537 cites W2979464795 @default.
- W4308100537 cites W2981043630 @default.
- W4308100537 cites W2981618144 @default.
- W4308100537 cites W2982018962 @default.
- W4308100537 cites W2994903009 @default.
- W4308100537 cites W2996845349 @default.
- W4308100537 cites W2997184146 @default.
- W4308100537 cites W3000264112 @default.
- W4308100537 cites W3000672840 @default.
- W4308100537 cites W3006385472 @default.
- W4308100537 cites W3008317421 @default.
- W4308100537 cites W3009228239 @default.
- W4308100537 cites W3011172915 @default.
- W4308100537 cites W3016635692 @default.
- W4308100537 cites W3027424210 @default.
- W4308100537 cites W3028207660 @default.
- W4308100537 cites W3034075062 @default.
- W4308100537 cites W3047101045 @default.
- W4308100537 cites W3053400884 @default.
- W4308100537 cites W3072681182 @default.
- W4308100537 cites W3084289605 @default.
- W4308100537 cites W3088946389 @default.
- W4308100537 cites W3089205103 @default.
- W4308100537 cites W3092031865 @default.
- W4308100537 cites W3092994897 @default.
- W4308100537 cites W3096834012 @default.
- W4308100537 cites W3096846826 @default.
- W4308100537 cites W3107128509 @default.
- W4308100537 cites W3111130380 @default.
- W4308100537 cites W3128072837 @default.
- W4308100537 cites W3129719703 @default.
- W4308100537 cites W3132503449 @default.
- W4308100537 cites W3133522851 @default.
- W4308100537 cites W3133659432 @default.
- W4308100537 cites W3135350073 @default.
- W4308100537 cites W3136951244 @default.
- W4308100537 cites W3144842037 @default.
- W4308100537 cites W3160296776 @default.
- W4308100537 cites W3166144403 @default.
- W4308100537 cites W3166356826 @default.
- W4308100537 cites W3169577678 @default.
- W4308100537 cites W3177043095 @default.
- W4308100537 cites W3187631632 @default.
- W4308100537 cites W3190822217 @default.
- W4308100537 cites W3193748583 @default.
- W4308100537 cites W3197551328 @default.
- W4308100537 cites W3197819402 @default.
- W4308100537 cites W3202088448 @default.
- W4308100537 cites W3203909734 @default.
- W4308100537 cites W3209766839 @default.
- W4308100537 cites W3211077245 @default.
- W4308100537 cites W3214437889 @default.
- W4308100537 cites W4205164641 @default.
- W4308100537 cites W4211250212 @default.
- W4308100537 cites W4212951373 @default.
- W4308100537 cites W4220757077 @default.
- W4308100537 cites W4221101267 @default.
- W4308100537 cites W4224317398 @default.
- W4308100537 cites W4225818335 @default.
- W4308100537 cites W4281732978 @default.
- W4308100537 cites W4283702811 @default.
- W4308100537 cites W4286299648 @default.
- W4308100537 cites W4295095418 @default.
- W4308100537 cites W4296450973 @default.
- W4308100537 doi "https://doi.org/10.1016/j.envint.2022.107606" @default.
- W4308100537 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36335896" @default.
- W4308100537 hasPublicationYear "2022" @default.
- W4308100537 type Work @default.
- W4308100537 citedByCount "15" @default.