Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308100545> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4308100545 endingPage "112032" @default.
- W4308100545 startingPage "112032" @default.
- W4308100545 abstract "Interfacial force closures in the two-fluid model play a critical role for the predictive capabilities of void fraction distribution. However, the practices of interfacial force modeling have long been challenged by the inherent physical complexity of the two-phase flows. The rapidly expanding computational capabilities in the recent years have made high-fidelity data from the interface-captured direct numerical simulation become more available, and hence potential for data-driven interfacial force modeling has prevailed. In this work, we established a data-driven modeling framework integrated to the HZDR multiphase Eulerian-Eulerian framework for computational fluid dynamics simulations. The data-driven framework is verified in a benchmark problem, where a feedforward neural network managed to capture the non-linear mapping between bubble Reynolds number and drag coefficient and reproduce the void distribution resulting from the baseline model in the test case. The second focus is on utilizing the bubble tracking data set to form a closure for the bubble drag in the turbulent bubbly flow, in which the drag coefficient is set to be correlated with the bubble Reynolds number and the Eötvös number. Pseudo-steady state filtering in the Frenet Frame was carried out to obtain the drag coefficient from the turbulent bubbly flow data. The performance of the data-driven drag model is also examined through a case study, where improvement of model’s prediction near-wall is regarded necessary. Discussion and further plans of investigation are provided." @default.
- W4308100545 created "2022-11-08" @default.
- W4308100545 creator A5003338251 @default.
- W4308100545 creator A5045778154 @default.
- W4308100545 creator A5049839458 @default.
- W4308100545 creator A5056722046 @default.
- W4308100545 creator A5090203929 @default.
- W4308100545 date "2022-12-01" @default.
- W4308100545 modified "2023-10-18" @default.
- W4308100545 title "Development of machine learning framework for interface force closures based on bubble tracking data" @default.
- W4308100545 cites W1879942928 @default.
- W4308100545 cites W2003322410 @default.
- W4308100545 cites W2027197837 @default.
- W4308100545 cites W2046326735 @default.
- W4308100545 cites W2069607284 @default.
- W4308100545 cites W2085027796 @default.
- W4308100545 cites W2137208421 @default.
- W4308100545 cites W2146864909 @default.
- W4308100545 cites W2148857983 @default.
- W4308100545 cites W2153492345 @default.
- W4308100545 cites W2461338316 @default.
- W4308100545 cites W2490388569 @default.
- W4308100545 cites W2887970844 @default.
- W4308100545 cites W2907522752 @default.
- W4308100545 cites W2990969504 @default.
- W4308100545 cites W3011653554 @default.
- W4308100545 cites W3017201781 @default.
- W4308100545 cites W3032963877 @default.
- W4308100545 cites W3042902362 @default.
- W4308100545 cites W3093834139 @default.
- W4308100545 cites W3122109253 @default.
- W4308100545 cites W4280546940 @default.
- W4308100545 cites W71520493 @default.
- W4308100545 doi "https://doi.org/10.1016/j.nucengdes.2022.112032" @default.
- W4308100545 hasPublicationYear "2022" @default.
- W4308100545 type Work @default.
- W4308100545 citedByCount "1" @default.
- W4308100545 countsByYear W43081005452023 @default.
- W4308100545 crossrefType "journal-article" @default.
- W4308100545 hasAuthorship W4308100545A5003338251 @default.
- W4308100545 hasAuthorship W4308100545A5045778154 @default.
- W4308100545 hasAuthorship W4308100545A5049839458 @default.
- W4308100545 hasAuthorship W4308100545A5056722046 @default.
- W4308100545 hasAuthorship W4308100545A5090203929 @default.
- W4308100545 hasConcept C121332964 @default.
- W4308100545 hasConcept C157915830 @default.
- W4308100545 hasConcept C182748727 @default.
- W4308100545 hasConcept C196558001 @default.
- W4308100545 hasConcept C2779379648 @default.
- W4308100545 hasConcept C41008148 @default.
- W4308100545 hasConcept C44154836 @default.
- W4308100545 hasConcept C57879066 @default.
- W4308100545 hasConcept C72117827 @default.
- W4308100545 hasConcept C72921944 @default.
- W4308100545 hasConceptScore W4308100545C121332964 @default.
- W4308100545 hasConceptScore W4308100545C157915830 @default.
- W4308100545 hasConceptScore W4308100545C182748727 @default.
- W4308100545 hasConceptScore W4308100545C196558001 @default.
- W4308100545 hasConceptScore W4308100545C2779379648 @default.
- W4308100545 hasConceptScore W4308100545C41008148 @default.
- W4308100545 hasConceptScore W4308100545C44154836 @default.
- W4308100545 hasConceptScore W4308100545C57879066 @default.
- W4308100545 hasConceptScore W4308100545C72117827 @default.
- W4308100545 hasConceptScore W4308100545C72921944 @default.
- W4308100545 hasLocation W43081005451 @default.
- W4308100545 hasOpenAccess W4308100545 @default.
- W4308100545 hasPrimaryLocation W43081005451 @default.
- W4308100545 hasRelatedWork W1988949146 @default.
- W4308100545 hasRelatedWork W1998206761 @default.
- W4308100545 hasRelatedWork W2027268502 @default.
- W4308100545 hasRelatedWork W2044757281 @default.
- W4308100545 hasRelatedWork W2095720702 @default.
- W4308100545 hasRelatedWork W2127942628 @default.
- W4308100545 hasRelatedWork W2160720433 @default.
- W4308100545 hasRelatedWork W3120013268 @default.
- W4308100545 hasRelatedWork W3190816254 @default.
- W4308100545 hasRelatedWork W4249321136 @default.
- W4308100545 hasVolume "399" @default.
- W4308100545 isParatext "false" @default.
- W4308100545 isRetracted "false" @default.
- W4308100545 workType "article" @default.