Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308100885> ?p ?o ?g. }
- W4308100885 endingPage "110182" @default.
- W4308100885 startingPage "110182" @default.
- W4308100885 abstract "Information on crop yield is important for food security, in particular under the conditions of climate change and growing population worldwide. We developed a new fully distributed, high spatial resolution, model of biomass accumulation and crop yield applicable to a highly heterogeneous desert-oasis agroecosystem. The bulk of required input data is obtained by retrieving pixel-wise biogeophysical variables from a suite of very diverse satellite data. Both temperature and water stress conditions at field-scale are given full consideration, while the model was designed to strike a balance between model applicability and satisfactory characterization of the heterogeneous desert-oasis system to estimate field-scale yield. The development of this model relies on three main innovations. First, the start and end of the growing season were estimated for each pixel by calibrating the high spatial and temporal resolution observations of Normalized Difference Vegetation Index (NDVI) by Sentinal-2 (S2) MSI (Multi-Spectral Instrument) against limited local phenological information. Second, to monitor crop water stress, account taken of irrigation, a process-based water and energy balance model was applied to estimate the actual evapotranspiration (ET). This requires knowledge of soil water availability, which is characterized by downscaling the ASCAT (Advanced SCATterrometer) soil moisture data product. To capture the dominant features of the eco-hydrological conditions in the desert and oasis agroecosystem, ET was further downscaled from the 1 km resolution. Third, likewise the water stress indicator, the air temperature stress indicator was mapped after characterizing the thermal contrast and heterogeneity of the desert-oasis system, by generating time series of air temperature at 1 km spatial resolution using the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) data product. In the temporal dimension, gaps were mitigated by applying time series analysis techniques to reconstruct cloud-free time series of LST, NDVI, fAPAR and albedo. These innovations add up to a high resolution characterization of crop response to the geospatial variability of weather and climate forcing in the desert-oasis agroecosystem. The model was applied to the dominant crops, i.e., spring wheat, maize, sunflower, and melon, in the oases of the Shiyang River Basin (northwestern China) characterized by a rather fragmented land use. The high resolution of pixel-wise ecohydrological parameters, i.e., crop phenology, temperature stress and water stress factors successfully reflect differences of crops with different phenology and location in the oases. The relative errors for wheat and maize yields compared to the census data are less than 5% at district level. At the county level, the relative errors of wheat yields of Liangzhou, Minqin, Gulang, Jinchuan, and Yongchang equal to 0.87%, 24.2%, 9.7%, 12.5%, and 7.2%. For maize, the dominant crop, the error on estimated yields was less than 5%, except in Gulang. The relative error on estimated yield for sunflower was less than 10% compared to agricultural census data. The relative error on estimated melon yield was 16%. This performance highlights the applicability of the model to estimate field-scale yields in agroecosystems characterized by fragmented land use." @default.
- W4308100885 created "2022-11-08" @default.
- W4308100885 creator A5025821839 @default.
- W4308100885 creator A5030691366 @default.
- W4308100885 creator A5030887101 @default.
- W4308100885 creator A5033553593 @default.
- W4308100885 creator A5043810901 @default.
- W4308100885 creator A5046667572 @default.
- W4308100885 creator A5047607105 @default.
- W4308100885 creator A5054039651 @default.
- W4308100885 creator A5055115466 @default.
- W4308100885 creator A5065456014 @default.
- W4308100885 creator A5071094661 @default.
- W4308100885 creator A5078804921 @default.
- W4308100885 date "2023-01-01" @default.
- W4308100885 modified "2023-09-27" @default.
- W4308100885 title "A data-driven high spatial resolution model of biomass accumulation and crop yield: Application to a fragmented desert-oasis agroecosystem" @default.
- W4308100885 cites W1967248741 @default.
- W4308100885 cites W1967559713 @default.
- W4308100885 cites W1974180061 @default.
- W4308100885 cites W1980853261 @default.
- W4308100885 cites W1981122766 @default.
- W4308100885 cites W1984671422 @default.
- W4308100885 cites W1985657832 @default.
- W4308100885 cites W1998438756 @default.
- W4308100885 cites W2017541618 @default.
- W4308100885 cites W2019355063 @default.
- W4308100885 cites W2026282499 @default.
- W4308100885 cites W2028898612 @default.
- W4308100885 cites W2030101523 @default.
- W4308100885 cites W2031886087 @default.
- W4308100885 cites W2032804723 @default.
- W4308100885 cites W2035617489 @default.
- W4308100885 cites W2047663045 @default.
- W4308100885 cites W2053283786 @default.
- W4308100885 cites W2062634568 @default.
- W4308100885 cites W2063597633 @default.
- W4308100885 cites W2069276699 @default.
- W4308100885 cites W2073119306 @default.
- W4308100885 cites W2077214952 @default.
- W4308100885 cites W2079620021 @default.
- W4308100885 cites W2118692586 @default.
- W4308100885 cites W2124323479 @default.
- W4308100885 cites W2143395434 @default.
- W4308100885 cites W2154700052 @default.
- W4308100885 cites W2158883105 @default.
- W4308100885 cites W2161557312 @default.
- W4308100885 cites W2161925775 @default.
- W4308100885 cites W2167891208 @default.
- W4308100885 cites W2168872978 @default.
- W4308100885 cites W2171629540 @default.
- W4308100885 cites W2268885765 @default.
- W4308100885 cites W2337444019 @default.
- W4308100885 cites W2532936747 @default.
- W4308100885 cites W2548481085 @default.
- W4308100885 cites W2767273025 @default.
- W4308100885 cites W2886280815 @default.
- W4308100885 cites W2911964244 @default.
- W4308100885 cites W2956075302 @default.
- W4308100885 cites W3000206187 @default.
- W4308100885 cites W3112273466 @default.
- W4308100885 cites W3208677343 @default.
- W4308100885 cites W3213630141 @default.
- W4308100885 cites W4220832597 @default.
- W4308100885 doi "https://doi.org/10.1016/j.ecolmodel.2022.110182" @default.
- W4308100885 hasPublicationYear "2023" @default.
- W4308100885 type Work @default.
- W4308100885 citedByCount "0" @default.
- W4308100885 crossrefType "journal-article" @default.
- W4308100885 hasAuthorship W4308100885A5025821839 @default.
- W4308100885 hasAuthorship W4308100885A5030691366 @default.
- W4308100885 hasAuthorship W4308100885A5030887101 @default.
- W4308100885 hasAuthorship W4308100885A5033553593 @default.
- W4308100885 hasAuthorship W4308100885A5043810901 @default.
- W4308100885 hasAuthorship W4308100885A5046667572 @default.
- W4308100885 hasAuthorship W4308100885A5047607105 @default.
- W4308100885 hasAuthorship W4308100885A5054039651 @default.
- W4308100885 hasAuthorship W4308100885A5055115466 @default.
- W4308100885 hasAuthorship W4308100885A5065456014 @default.
- W4308100885 hasAuthorship W4308100885A5071094661 @default.
- W4308100885 hasAuthorship W4308100885A5078804921 @default.
- W4308100885 hasBestOaLocation W43081008851 @default.
- W4308100885 hasConcept C115540264 @default.
- W4308100885 hasConcept C127313418 @default.
- W4308100885 hasConcept C127413603 @default.
- W4308100885 hasConcept C132651083 @default.
- W4308100885 hasConcept C137660486 @default.
- W4308100885 hasConcept C142724271 @default.
- W4308100885 hasConcept C1549246 @default.
- W4308100885 hasConcept C176783924 @default.
- W4308100885 hasConcept C187320778 @default.
- W4308100885 hasConcept C18903297 @default.
- W4308100885 hasConcept C24939127 @default.
- W4308100885 hasConcept C2776133958 @default.
- W4308100885 hasConcept C39432304 @default.
- W4308100885 hasConcept C41156917 @default.
- W4308100885 hasConcept C6557445 @default.
- W4308100885 hasConcept C66465714 @default.