Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308100963> ?p ?o ?g. }
- W4308100963 endingPage "103790" @default.
- W4308100963 startingPage "103790" @default.
- W4308100963 abstract "Recently, many studies on product design have been utilizing online data. They analyze user-generated online data and draw design implications. However, most of them provide customers’ tendency for feature categories rather than spec ranges for sub-features, which are crucial in industrial applications. This paper proposes an approach based on data mining and neural networks to extract spec guidance for engineering design from online data. First, product sub-features are extracted from online data, and customer choice sets are constructed. Next, a neural network choice model is trained based on these choice sets. Finally, the model is interpreted by SHAP (SHapley Additive exPlanations). In the final stage, this study proposes a method for analyzing the obtained SHAP values to draw new design implications. The suggested approach was tested on smartphone review data, and the result provides a set of recommended spec values for each sub-feature. The resultant spec guidance can help companies design a product with spec configuration preferred by customers." @default.
- W4308100963 created "2022-11-08" @default.
- W4308100963 creator A5029515654 @default.
- W4308100963 creator A5034836970 @default.
- W4308100963 creator A5044103085 @default.
- W4308100963 date "2023-01-01" @default.
- W4308100963 modified "2023-09-25" @default.
- W4308100963 title "Spec guidance for engineering design based on data mining and neural networks" @default.
- W4308100963 cites W2053379819 @default.
- W4308100963 cites W2061282660 @default.
- W4308100963 cites W2099113722 @default.
- W4308100963 cites W2099773105 @default.
- W4308100963 cites W2130706307 @default.
- W4308100963 cites W2144038161 @default.
- W4308100963 cites W2145634917 @default.
- W4308100963 cites W2269703563 @default.
- W4308100963 cites W2803716633 @default.
- W4308100963 cites W2884443195 @default.
- W4308100963 cites W2887154848 @default.
- W4308100963 cites W2889960786 @default.
- W4308100963 cites W2901312569 @default.
- W4308100963 cites W2912943867 @default.
- W4308100963 cites W2915385321 @default.
- W4308100963 cites W2958187959 @default.
- W4308100963 cites W2965032453 @default.
- W4308100963 cites W2999287990 @default.
- W4308100963 cites W3004262299 @default.
- W4308100963 cites W3086254463 @default.
- W4308100963 cites W3107352220 @default.
- W4308100963 cites W3114126246 @default.
- W4308100963 cites W3123091093 @default.
- W4308100963 cites W3141706753 @default.
- W4308100963 cites W3185346494 @default.
- W4308100963 cites W3185786724 @default.
- W4308100963 cites W3213520820 @default.
- W4308100963 cites W4206448857 @default.
- W4308100963 cites W4210877620 @default.
- W4308100963 cites W4211076749 @default.
- W4308100963 cites W4220793641 @default.
- W4308100963 cites W4221046785 @default.
- W4308100963 cites W4244065274 @default.
- W4308100963 doi "https://doi.org/10.1016/j.compind.2022.103790" @default.
- W4308100963 hasPublicationYear "2023" @default.
- W4308100963 type Work @default.
- W4308100963 citedByCount "1" @default.
- W4308100963 crossrefType "journal-article" @default.
- W4308100963 hasAuthorship W4308100963A5029515654 @default.
- W4308100963 hasAuthorship W4308100963A5034836970 @default.
- W4308100963 hasAuthorship W4308100963A5044103085 @default.
- W4308100963 hasConcept C108583219 @default.
- W4308100963 hasConcept C119857082 @default.
- W4308100963 hasConcept C120823896 @default.
- W4308100963 hasConcept C124101348 @default.
- W4308100963 hasConcept C127413603 @default.
- W4308100963 hasConcept C13736549 @default.
- W4308100963 hasConcept C138885662 @default.
- W4308100963 hasConcept C154945302 @default.
- W4308100963 hasConcept C177264268 @default.
- W4308100963 hasConcept C199360897 @default.
- W4308100963 hasConcept C2524010 @default.
- W4308100963 hasConcept C2776401178 @default.
- W4308100963 hasConcept C2778565505 @default.
- W4308100963 hasConcept C2778827112 @default.
- W4308100963 hasConcept C33923547 @default.
- W4308100963 hasConcept C41008148 @default.
- W4308100963 hasConcept C41895202 @default.
- W4308100963 hasConcept C50644808 @default.
- W4308100963 hasConcept C58489278 @default.
- W4308100963 hasConcept C90673727 @default.
- W4308100963 hasConceptScore W4308100963C108583219 @default.
- W4308100963 hasConceptScore W4308100963C119857082 @default.
- W4308100963 hasConceptScore W4308100963C120823896 @default.
- W4308100963 hasConceptScore W4308100963C124101348 @default.
- W4308100963 hasConceptScore W4308100963C127413603 @default.
- W4308100963 hasConceptScore W4308100963C13736549 @default.
- W4308100963 hasConceptScore W4308100963C138885662 @default.
- W4308100963 hasConceptScore W4308100963C154945302 @default.
- W4308100963 hasConceptScore W4308100963C177264268 @default.
- W4308100963 hasConceptScore W4308100963C199360897 @default.
- W4308100963 hasConceptScore W4308100963C2524010 @default.
- W4308100963 hasConceptScore W4308100963C2776401178 @default.
- W4308100963 hasConceptScore W4308100963C2778565505 @default.
- W4308100963 hasConceptScore W4308100963C2778827112 @default.
- W4308100963 hasConceptScore W4308100963C33923547 @default.
- W4308100963 hasConceptScore W4308100963C41008148 @default.
- W4308100963 hasConceptScore W4308100963C41895202 @default.
- W4308100963 hasConceptScore W4308100963C50644808 @default.
- W4308100963 hasConceptScore W4308100963C58489278 @default.
- W4308100963 hasConceptScore W4308100963C90673727 @default.
- W4308100963 hasFunder F4320322120 @default.
- W4308100963 hasLocation W43081009631 @default.
- W4308100963 hasOpenAccess W4308100963 @default.
- W4308100963 hasPrimaryLocation W43081009631 @default.
- W4308100963 hasRelatedWork W2250140425 @default.
- W4308100963 hasRelatedWork W2911455822 @default.
- W4308100963 hasRelatedWork W2942650110 @default.
- W4308100963 hasRelatedWork W2963749793 @default.
- W4308100963 hasRelatedWork W2968586400 @default.