Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308105857> ?p ?o ?g. }
- W4308105857 endingPage "5533" @default.
- W4308105857 startingPage "5533" @default.
- W4308105857 abstract "Mangrove-forest classification by using deep learning algorithms has attracted increasing attention but remains challenging. The current studies on the transfer classification of mangrove communities between different regions and different sensors are especially still unclear. To fill the research gap, this study developed a new deep-learning algorithm (encoder–decoder with mixed depth-wise convolution and cascade upsampling, MCCUNet) by modifying the encoder and decoder sections of the DeepLabV3+ algorithm and presented three transfer-learning strategies, namely frozen transfer learning (F-TL), fine-tuned transfer learning (Ft-TL), and sensor-and-phase transfer learning (SaP-TL), to classify mangrove communities by using the MCCUNet algorithm and high-resolution UAV multispectral images. This study combined the deep-learning algorithms with recursive feature elimination and principal component analysis (RFE–PCA), using a high-dimensional dataset to map and classify mangrove communities, and evaluated their classification performance. The results of this study showed the following: (1) The MCCUNet algorithm outperformed the original DeepLabV3+ algorithm for classifying mangrove communities, achieving the highest overall classification accuracy (OA), i.e., 97.24%, in all scenarios. (2) The RFE–PCA dimension reduction improved the classification performance of deep-learning algorithms. The OA of mangrove species from using the MCCUNet algorithm was improved by 7.27% after adding dimension-reduced texture features and vegetation indices. (3) The Ft-TL strategy enabled the algorithm to achieve better classification accuracy and stability than the F-TL strategy. The highest improvement in the F1–score of Spartina alterniflora was 19.56%, using the MCCUNet algorithm with the Ft-TL strategy. (4) The SaP-TL strategy produced better transfer-learning classifications of mangrove communities between images of different phases and sensors. The highest improvement in the F1–score of Aegiceras corniculatum was 19.85%, using the MCCUNet algorithm with the SaP-TL strategy. (5) All three transfer-learning strategies achieved high accuracy in classifying mangrove communities, with the mean F1–score of 84.37~95.25%." @default.
- W4308105857 created "2022-11-08" @default.
- W4308105857 creator A5000183666 @default.
- W4308105857 creator A5002522647 @default.
- W4308105857 creator A5006742898 @default.
- W4308105857 creator A5023600709 @default.
- W4308105857 creator A5053344101 @default.
- W4308105857 creator A5059723326 @default.
- W4308105857 creator A5074166685 @default.
- W4308105857 creator A5084848491 @default.
- W4308105857 creator A5091304020 @default.
- W4308105857 date "2022-11-02" @default.
- W4308105857 modified "2023-10-18" @default.
- W4308105857 title "Comparison of Different Transfer Learning Methods for Classification of Mangrove Communities Using MCCUNet and UAV Multispectral Images" @default.
- W4308105857 cites W2019328827 @default.
- W4308105857 cites W2084413241 @default.
- W4308105857 cites W2122825721 @default.
- W4308105857 cites W2395579298 @default.
- W4308105857 cites W2592737629 @default.
- W4308105857 cites W2594502636 @default.
- W4308105857 cites W2782182972 @default.
- W4308105857 cites W2784301945 @default.
- W4308105857 cites W2884821113 @default.
- W4308105857 cites W2885735575 @default.
- W4308105857 cites W2889628655 @default.
- W4308105857 cites W2916798096 @default.
- W4308105857 cites W2919115771 @default.
- W4308105857 cites W2948861672 @default.
- W4308105857 cites W2949747980 @default.
- W4308105857 cites W2964309882 @default.
- W4308105857 cites W2973118224 @default.
- W4308105857 cites W2976444809 @default.
- W4308105857 cites W2978030930 @default.
- W4308105857 cites W2991069154 @default.
- W4308105857 cites W3000457862 @default.
- W4308105857 cites W3010345596 @default.
- W4308105857 cites W3016345523 @default.
- W4308105857 cites W3018425007 @default.
- W4308105857 cites W3081224410 @default.
- W4308105857 cites W3094775289 @default.
- W4308105857 cites W3110105524 @default.
- W4308105857 cites W3110314143 @default.
- W4308105857 cites W3111994125 @default.
- W4308105857 cites W3117446664 @default.
- W4308105857 cites W3120674267 @default.
- W4308105857 cites W3139003984 @default.
- W4308105857 cites W3156668449 @default.
- W4308105857 cites W3172397285 @default.
- W4308105857 cites W3183309240 @default.
- W4308105857 cites W3184401950 @default.
- W4308105857 cites W3188836801 @default.
- W4308105857 cites W3213513932 @default.
- W4308105857 cites W4200029116 @default.
- W4308105857 cites W4200429143 @default.
- W4308105857 cites W4205163225 @default.
- W4308105857 cites W4206466317 @default.
- W4308105857 cites W4207056347 @default.
- W4308105857 cites W4210776798 @default.
- W4308105857 cites W4220863835 @default.
- W4308105857 doi "https://doi.org/10.3390/rs14215533" @default.
- W4308105857 hasPublicationYear "2022" @default.
- W4308105857 type Work @default.
- W4308105857 citedByCount "6" @default.
- W4308105857 countsByYear W43081058572023 @default.
- W4308105857 crossrefType "journal-article" @default.
- W4308105857 hasAuthorship W4308105857A5000183666 @default.
- W4308105857 hasAuthorship W4308105857A5002522647 @default.
- W4308105857 hasAuthorship W4308105857A5006742898 @default.
- W4308105857 hasAuthorship W4308105857A5023600709 @default.
- W4308105857 hasAuthorship W4308105857A5053344101 @default.
- W4308105857 hasAuthorship W4308105857A5059723326 @default.
- W4308105857 hasAuthorship W4308105857A5074166685 @default.
- W4308105857 hasAuthorship W4308105857A5084848491 @default.
- W4308105857 hasAuthorship W4308105857A5091304020 @default.
- W4308105857 hasBestOaLocation W43081058571 @default.
- W4308105857 hasConcept C108583219 @default.
- W4308105857 hasConcept C11413529 @default.
- W4308105857 hasConcept C119857082 @default.
- W4308105857 hasConcept C142724271 @default.
- W4308105857 hasConcept C150899416 @default.
- W4308105857 hasConcept C153180895 @default.
- W4308105857 hasConcept C154945302 @default.
- W4308105857 hasConcept C173163844 @default.
- W4308105857 hasConcept C205649164 @default.
- W4308105857 hasConcept C27438332 @default.
- W4308105857 hasConcept C2776133958 @default.
- W4308105857 hasConcept C41008148 @default.
- W4308105857 hasConcept C62649853 @default.
- W4308105857 hasConcept C70518039 @default.
- W4308105857 hasConcept C71924100 @default.
- W4308105857 hasConceptScore W4308105857C108583219 @default.
- W4308105857 hasConceptScore W4308105857C11413529 @default.
- W4308105857 hasConceptScore W4308105857C119857082 @default.
- W4308105857 hasConceptScore W4308105857C142724271 @default.
- W4308105857 hasConceptScore W4308105857C150899416 @default.
- W4308105857 hasConceptScore W4308105857C153180895 @default.
- W4308105857 hasConceptScore W4308105857C154945302 @default.
- W4308105857 hasConceptScore W4308105857C173163844 @default.