Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308105876> ?p ?o ?g. }
- W4308105876 endingPage "5515" @default.
- W4308105876 startingPage "5515" @default.
- W4308105876 abstract "Floods, one of the most common natural hazards globally, are challenging to anticipate and estimate accurately. This study aims to demonstrate the predictive ability of four ensemble algorithms for assessing flood risk. Bagging ensemble (BE), logistic model tree (LT), kernel support vector machine (k-SVM), and k-nearest neighbour (KNN) are the four algorithms used in this study for flood zoning in Jeddah City, Saudi Arabia. The 141 flood locations have been identified in the research area based on the interpretation of aerial photos, historical data, Google Earth, and field surveys. For this purpose, 14 continuous factors and different categorical are identified to examine their effect on flooding in the study area. The dependency analysis (DA) was used to analyse the strength of the predictors. The study comprises two different input variables combination (C1 and C2) based on the features sensitivity selection. The under-the-receiver operating characteristic curve (AUC) and root mean square error (RMSE) were utilised to determine the accuracy of a good forecast. The validation findings showed that BE-C1 performed best in terms of precision, accuracy, AUC, and specificity, as well as the lowest error (RMSE). The performance skills of the overall models proved reliable with a range of AUC (89–97%). The study can also be beneficial in flash flood forecasts and warning activity developed by the Jeddah flood disaster in Saudi Arabia." @default.
- W4308105876 created "2022-11-08" @default.
- W4308105876 creator A5007631351 @default.
- W4308105876 creator A5030371811 @default.
- W4308105876 creator A5034672880 @default.
- W4308105876 creator A5059504799 @default.
- W4308105876 creator A5062007467 @default.
- W4308105876 creator A5072749497 @default.
- W4308105876 date "2022-11-02" @default.
- W4308105876 modified "2023-10-12" @default.
- W4308105876 title "Computational Machine Learning Approach for Flood Susceptibility Assessment Integrated with Remote Sensing and GIS Techniques from Jeddah, Saudi Arabia" @default.
- W4308105876 cites W1974281059 @default.
- W4308105876 cites W1975914988 @default.
- W4308105876 cites W1981039744 @default.
- W4308105876 cites W1983724666 @default.
- W4308105876 cites W2010819225 @default.
- W4308105876 cites W2015469250 @default.
- W4308105876 cites W2024213614 @default.
- W4308105876 cites W2036535026 @default.
- W4308105876 cites W2040726420 @default.
- W4308105876 cites W2046567883 @default.
- W4308105876 cites W2065642067 @default.
- W4308105876 cites W2076475918 @default.
- W4308105876 cites W2101108516 @default.
- W4308105876 cites W2151804120 @default.
- W4308105876 cites W2309165934 @default.
- W4308105876 cites W2322078666 @default.
- W4308105876 cites W2423094380 @default.
- W4308105876 cites W2551944316 @default.
- W4308105876 cites W2587847980 @default.
- W4308105876 cites W2606804832 @default.
- W4308105876 cites W2640557513 @default.
- W4308105876 cites W2755533000 @default.
- W4308105876 cites W2758887415 @default.
- W4308105876 cites W2761698665 @default.
- W4308105876 cites W2782879444 @default.
- W4308105876 cites W2784075164 @default.
- W4308105876 cites W2784967614 @default.
- W4308105876 cites W2800800397 @default.
- W4308105876 cites W2809771335 @default.
- W4308105876 cites W2849998820 @default.
- W4308105876 cites W2886933868 @default.
- W4308105876 cites W2887575872 @default.
- W4308105876 cites W2892289985 @default.
- W4308105876 cites W2895196240 @default.
- W4308105876 cites W2898554108 @default.
- W4308105876 cites W2899026392 @default.
- W4308105876 cites W2899803585 @default.
- W4308105876 cites W2903266193 @default.
- W4308105876 cites W2904486608 @default.
- W4308105876 cites W2907566391 @default.
- W4308105876 cites W2907706804 @default.
- W4308105876 cites W2912361013 @default.
- W4308105876 cites W2922019787 @default.
- W4308105876 cites W2946020082 @default.
- W4308105876 cites W2949017992 @default.
- W4308105876 cites W2958711105 @default.
- W4308105876 cites W2981078235 @default.
- W4308105876 cites W2985766090 @default.
- W4308105876 cites W2991583056 @default.
- W4308105876 cites W2998297225 @default.
- W4308105876 cites W2998999740 @default.
- W4308105876 cites W3005816637 @default.
- W4308105876 cites W3010248316 @default.
- W4308105876 cites W3017343596 @default.
- W4308105876 cites W3028860567 @default.
- W4308105876 cites W3036595569 @default.
- W4308105876 cites W3042024008 @default.
- W4308105876 cites W3049622351 @default.
- W4308105876 cites W3089678941 @default.
- W4308105876 cites W3091948139 @default.
- W4308105876 cites W3093634062 @default.
- W4308105876 cites W3095770995 @default.
- W4308105876 cites W3096872603 @default.
- W4308105876 cites W3097818414 @default.
- W4308105876 cites W3111929660 @default.
- W4308105876 cites W3119728054 @default.
- W4308105876 cites W3120326692 @default.
- W4308105876 cites W3120886077 @default.
- W4308105876 cites W3122286376 @default.
- W4308105876 cites W3127777396 @default.
- W4308105876 cites W3140569390 @default.
- W4308105876 cites W3140696179 @default.
- W4308105876 cites W3153986942 @default.
- W4308105876 cites W3155498383 @default.
- W4308105876 cites W3161661310 @default.
- W4308105876 cites W3164693126 @default.
- W4308105876 cites W3171485106 @default.
- W4308105876 cites W4205841807 @default.
- W4308105876 cites W4212895450 @default.
- W4308105876 cites W4220775862 @default.
- W4308105876 cites W4220958915 @default.
- W4308105876 cites W4220996674 @default.
- W4308105876 cites W4226048378 @default.
- W4308105876 cites W4230777928 @default.
- W4308105876 cites W4280533664 @default.
- W4308105876 cites W4297957988 @default.
- W4308105876 doi "https://doi.org/10.3390/rs14215515" @default.