Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308106315> ?p ?o ?g. }
- W4308106315 endingPage "144272" @default.
- W4308106315 startingPage "144272" @default.
- W4308106315 abstract "Additive manufacturing (AM) of high-entropy alloys (HEAs), such as CoCrFeMnNi, is of high interest owing to their potential applications for extreme conditions (e.g., cryogenic environment). However, a major drawback of additively manufactured (AMed) metallic components is their poor and anisotropic mechanical properties, which primarily originate from the presence of metallurgical defects and coarse columnar grains. This study herein aims to (i) manipulate directed energy deposition (DED) AM parameters towards densification and (ii) suppress the formation of coarse columnar grains in DED AMed CoCrFeMnNi HEA. First, the effects of laser powers and laser scan speeds on the formation of various metallurgical defects in the DED AMed CoCrFeMnNi samples were investigated. Contrary to the laser powder bed fusion (L-PBF) AMed CoCrFeMnNi HEAs which were reported to form lack-of-fusion defects in the regime of low laser powers and high laser scan speeds, the lack-of-fusion defects in DED AMed CoCrFeMnNi HEAs tend to form in the regime of high laser powers and low laser scan speeds. This abnormal observation was rationalized by recourse to the resultant large layer thickness and hence insufficient melting. Cracking was observed in the regime of high laser scan speeds, and these cracks were classified into solidification cracks based on the observation of the intruding cellular/dendritic features on the cracked surface. High angle grain boundaries were found to be more sensitive to solidification cracking and the inherent mechanisms were discussed. Through such a high throughput library of samples, a printability map and near-full density were achieved for DED AMed CoCrFeMnNi HEAs. Second, for the grain structure control, contrary to the previous works that tried to manipulate the solidification conditions or introduce the secondary heterogenous particles, the current paper employed ultrasonic-assisted DED AM processing of CoCrFeMnNi HEA. Despite the measured lowered cooling rate, the coarse columnar grains were replaced by finer equiaxed grains in the presence of ultrasound, i.e., the average grain size decreases from 140 to 44 μm. The formation of fine equiaxed grains were rationalized by the combined effects of the ultrasonic-facilitated dendrite fragmentation as heterogenous nucleation sites and the enhanced liquid supercooling in the columnar front. As a direct result, the tensile yield strength of the ultrasonic-assisted DED AMed CoCrFeMnNi HEA increases by ∼ 17%, with no obvious tensile ductility drop. The strength increase was well explained by the grain refinement effect based on the classic Hall-Petch relationship. These findings provide opportunities to additively manufacture high-performance and complex-geometry HEAs components for critical applications. • Solidification cracking mechanisms of DED-ed CoCrFeMnNi high-entropy alloy were discussed. • Ultrasonic assistance lowers temperature gradient and cooling rate during DED. • Ultrasonic assistance refines the grain size of DED-ed CoCrFeMnNi high-entropy alloy. • With ultrasonic assistance, the tensile yield strength increases by ∼ 17%, without obvious ductility drop." @default.
- W4308106315 created "2022-11-08" @default.
- W4308106315 creator A5067260285 @default.
- W4308106315 creator A5090598292 @default.
- W4308106315 date "2022-12-01" @default.
- W4308106315 modified "2023-10-17" @default.
- W4308106315 title "Directed energy deposition additive manufacturing of CoCrFeMnNi high-entropy alloy towards densification, grain structure control and improved tensile properties" @default.
- W4308106315 cites W1968985108 @default.
- W4308106315 cites W1981587183 @default.
- W4308106315 cites W1988130819 @default.
- W4308106315 cites W2003975937 @default.
- W4308106315 cites W2024379694 @default.
- W4308106315 cites W2051337132 @default.
- W4308106315 cites W2058085399 @default.
- W4308106315 cites W2064152989 @default.
- W4308106315 cites W2093974253 @default.
- W4308106315 cites W2095370971 @default.
- W4308106315 cites W2103109670 @default.
- W4308106315 cites W2343608058 @default.
- W4308106315 cites W2357202762 @default.
- W4308106315 cites W2462198724 @default.
- W4308106315 cites W2472567732 @default.
- W4308106315 cites W2495880958 @default.
- W4308106315 cites W2556081454 @default.
- W4308106315 cites W2588517549 @default.
- W4308106315 cites W2606263512 @default.
- W4308106315 cites W2736831392 @default.
- W4308106315 cites W2750838822 @default.
- W4308106315 cites W2758567842 @default.
- W4308106315 cites W2765704920 @default.
- W4308106315 cites W2765752905 @default.
- W4308106315 cites W2766877079 @default.
- W4308106315 cites W2766909750 @default.
- W4308106315 cites W2804539599 @default.
- W4308106315 cites W2911870840 @default.
- W4308106315 cites W2936235653 @default.
- W4308106315 cites W2950895059 @default.
- W4308106315 cites W2953815116 @default.
- W4308106315 cites W2967833934 @default.
- W4308106315 cites W2980850178 @default.
- W4308106315 cites W2992394995 @default.
- W4308106315 cites W2998496955 @default.
- W4308106315 cites W2999955701 @default.
- W4308106315 cites W3005015298 @default.
- W4308106315 cites W3037915125 @default.
- W4308106315 cites W3048369792 @default.
- W4308106315 cites W3093240867 @default.
- W4308106315 cites W3118730688 @default.
- W4308106315 cites W3119065351 @default.
- W4308106315 cites W3122795440 @default.
- W4308106315 cites W3128539058 @default.
- W4308106315 cites W3145421893 @default.
- W4308106315 cites W3155382531 @default.
- W4308106315 cites W3166723590 @default.
- W4308106315 cites W3174048670 @default.
- W4308106315 cites W3180282413 @default.
- W4308106315 cites W3192356473 @default.
- W4308106315 cites W3200834604 @default.
- W4308106315 cites W3201273958 @default.
- W4308106315 cites W3203956882 @default.
- W4308106315 cites W4210462009 @default.
- W4308106315 cites W860289966 @default.
- W4308106315 cites W1255602050 @default.
- W4308106315 doi "https://doi.org/10.1016/j.msea.2022.144272" @default.
- W4308106315 hasPublicationYear "2022" @default.
- W4308106315 type Work @default.
- W4308106315 citedByCount "6" @default.
- W4308106315 countsByYear W43081063152023 @default.
- W4308106315 crossrefType "journal-article" @default.
- W4308106315 hasAuthorship W4308106315A5067260285 @default.
- W4308106315 hasAuthorship W4308106315A5090598292 @default.
- W4308106315 hasConcept C112950240 @default.
- W4308106315 hasConcept C127313418 @default.
- W4308106315 hasConcept C151730666 @default.
- W4308106315 hasConcept C159985019 @default.
- W4308106315 hasConcept C191897082 @default.
- W4308106315 hasConcept C192562407 @default.
- W4308106315 hasConcept C2780026712 @default.
- W4308106315 hasConcept C2816523 @default.
- W4308106315 hasConcept C64297162 @default.
- W4308106315 hasConceptScore W4308106315C112950240 @default.
- W4308106315 hasConceptScore W4308106315C127313418 @default.
- W4308106315 hasConceptScore W4308106315C151730666 @default.
- W4308106315 hasConceptScore W4308106315C159985019 @default.
- W4308106315 hasConceptScore W4308106315C191897082 @default.
- W4308106315 hasConceptScore W4308106315C192562407 @default.
- W4308106315 hasConceptScore W4308106315C2780026712 @default.
- W4308106315 hasConceptScore W4308106315C2816523 @default.
- W4308106315 hasConceptScore W4308106315C64297162 @default.
- W4308106315 hasFunder F4320321001 @default.
- W4308106315 hasFunder F4320322769 @default.
- W4308106315 hasLocation W43081063151 @default.
- W4308106315 hasOpenAccess W4308106315 @default.
- W4308106315 hasPrimaryLocation W43081063151 @default.
- W4308106315 hasRelatedWork W1975608897 @default.
- W4308106315 hasRelatedWork W2067778584 @default.
- W4308106315 hasRelatedWork W2729932191 @default.
- W4308106315 hasRelatedWork W2766515653 @default.