Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308120117> ?p ?o ?g. }
- W4308120117 abstract "Background Nurses are at high risk for depression and anxiety symptoms after the outbreak of the COVID-19 pandemic. We aimed to assess the network structure of anxiety and depression symptoms among Chinese nurses in the late stage of this pandemic. Method A total of 6,183 nurses were recruited across China from Oct 2020 to Apr 2021 through snowball sampling. We used Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder scale-7 (GAD-7) to assess depression and anxiety, respectively. We used the Ising model to estimate the network. The index “expected influence” and “bridge expected influence” were applied to determine the central symptoms and bridge symptoms of the anxiety-depression network. We tested the stability and accuracy of the network via the case-dropping procedure and non-parametric bootstrapping procedure. Result The network had excellent stability and accuracy. Central symptoms included “restlessness”, “trouble relaxing”, “sad mood”, and “uncontrollable worry”. “Restlessness”, “nervous”, and “suicidal thoughts” served as bridge symptoms. Conclusion Restlessness emerged as the strongest central and bridge symptom in the anxiety-depression network of nurses. Intervention on depression and anxiety symptoms in nurses should prioritize this symptom." @default.
- W4308120117 created "2022-11-08" @default.
- W4308120117 creator A5005475250 @default.
- W4308120117 creator A5006822602 @default.
- W4308120117 creator A5015390942 @default.
- W4308120117 creator A5018179950 @default.
- W4308120117 creator A5022985581 @default.
- W4308120117 creator A5023889186 @default.
- W4308120117 creator A5024622813 @default.
- W4308120117 creator A5029759524 @default.
- W4308120117 creator A5039030237 @default.
- W4308120117 creator A5042128259 @default.
- W4308120117 creator A5044484690 @default.
- W4308120117 creator A5046672562 @default.
- W4308120117 creator A5047968661 @default.
- W4308120117 creator A5051439492 @default.
- W4308120117 creator A5058881142 @default.
- W4308120117 creator A5059343454 @default.
- W4308120117 creator A5060496364 @default.
- W4308120117 creator A5064782636 @default.
- W4308120117 creator A5073130120 @default.
- W4308120117 creator A5075635772 @default.
- W4308120117 creator A5080108371 @default.
- W4308120117 creator A5080153638 @default.
- W4308120117 creator A5083543862 @default.
- W4308120117 creator A5086770091 @default.
- W4308120117 creator A5087572388 @default.
- W4308120117 creator A5089849880 @default.
- W4308120117 date "2022-11-02" @default.
- W4308120117 modified "2023-10-16" @default.
- W4308120117 title "A network analysis of anxiety and depression symptoms among Chinese nurses in the late stage of the COVID-19 pandemic" @default.
- W4308120117 cites W2004873925 @default.
- W4308120117 cites W2015530535 @default.
- W4308120117 cites W2054508308 @default.
- W4308120117 cites W2064282706 @default.
- W4308120117 cites W2068055929 @default.
- W4308120117 cites W2129579709 @default.
- W4308120117 cites W2142897908 @default.
- W4308120117 cites W2519546524 @default.
- W4308120117 cites W2611377066 @default.
- W4308120117 cites W2747790498 @default.
- W4308120117 cites W2767724103 @default.
- W4308120117 cites W2801359717 @default.
- W4308120117 cites W2962989581 @default.
- W4308120117 cites W3015811538 @default.
- W4308120117 cites W3026475188 @default.
- W4308120117 cites W3042603537 @default.
- W4308120117 cites W3083926397 @default.
- W4308120117 cites W3086458808 @default.
- W4308120117 cites W3108472901 @default.
- W4308120117 cites W3110661779 @default.
- W4308120117 cites W3113072751 @default.
- W4308120117 cites W3124170626 @default.
- W4308120117 cites W3127465881 @default.
- W4308120117 cites W3133959340 @default.
- W4308120117 cites W3135065233 @default.
- W4308120117 cites W3165035464 @default.
- W4308120117 cites W3184123993 @default.
- W4308120117 cites W3185536905 @default.
- W4308120117 cites W3185903461 @default.
- W4308120117 cites W3197691821 @default.
- W4308120117 cites W3209224072 @default.
- W4308120117 cites W3215131285 @default.
- W4308120117 cites W4200340415 @default.
- W4308120117 cites W4200444645 @default.
- W4308120117 cites W4200579290 @default.
- W4308120117 cites W4206681933 @default.
- W4308120117 cites W4220816024 @default.
- W4308120117 cites W4224879746 @default.
- W4308120117 cites W4225150639 @default.
- W4308120117 cites W4226068187 @default.
- W4308120117 cites W4226307347 @default.
- W4308120117 cites W4229042433 @default.
- W4308120117 cites W4245611896 @default.
- W4308120117 cites W4283575062 @default.
- W4308120117 cites W4283736720 @default.
- W4308120117 doi "https://doi.org/10.3389/fpubh.2022.996386" @default.
- W4308120117 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36408014" @default.
- W4308120117 hasPublicationYear "2022" @default.
- W4308120117 type Work @default.
- W4308120117 citedByCount "2" @default.
- W4308120117 countsByYear W43081201172023 @default.
- W4308120117 crossrefType "journal-article" @default.
- W4308120117 hasAuthorship W4308120117A5005475250 @default.
- W4308120117 hasAuthorship W4308120117A5006822602 @default.
- W4308120117 hasAuthorship W4308120117A5015390942 @default.
- W4308120117 hasAuthorship W4308120117A5018179950 @default.
- W4308120117 hasAuthorship W4308120117A5022985581 @default.
- W4308120117 hasAuthorship W4308120117A5023889186 @default.
- W4308120117 hasAuthorship W4308120117A5024622813 @default.
- W4308120117 hasAuthorship W4308120117A5029759524 @default.
- W4308120117 hasAuthorship W4308120117A5039030237 @default.
- W4308120117 hasAuthorship W4308120117A5042128259 @default.
- W4308120117 hasAuthorship W4308120117A5044484690 @default.
- W4308120117 hasAuthorship W4308120117A5046672562 @default.
- W4308120117 hasAuthorship W4308120117A5047968661 @default.
- W4308120117 hasAuthorship W4308120117A5051439492 @default.
- W4308120117 hasAuthorship W4308120117A5058881142 @default.
- W4308120117 hasAuthorship W4308120117A5059343454 @default.
- W4308120117 hasAuthorship W4308120117A5060496364 @default.